Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add in latest dev changes #53

Merged
merged 18 commits into from
Oct 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ env:
- R_BUILD_ARGS="--no-build-vignettes --no-manual"
- R_CHECK_ARGS="--no-build-vignettes --no-manual --timings"
- _R_CHECK_TIMINGS_="0"
- R_DEFAULT_INTERNET_TIMEOUT="300"

r:
- release
Expand Down
40 changes: 22 additions & 18 deletions R/ggeplot.R
Original file line number Diff line number Diff line change
Expand Up @@ -10,22 +10,26 @@
#' @importFrom ggplot2 qplot aes geom_rug geom_hline geom_vline annotate theme element_text element_blank element_line element_rect
#'
#' @export
ggeplot <- function(n, positions, x_axis, y_axis, title="") {
score <- which.max(abs(y_axis))
qplot(x_axis,
y_axis,
main=title,
ylab="Running Enrichment Score",
xlab="Position in Ranked List of Genes",
geom="line")+
geom_rug(data=data.frame(positions), aes(x=positions), inherit.aes=FALSE)+
geom_hline(yintercept=0) +
geom_vline(xintercept=n/2, linetype="dotted") +
annotate("point", x=x_axis[score], y=y_axis[score], color="red") +
annotate("text", x=x_axis[score]+n/20, y=y_axis[score], label=round(y_axis[score],2)) +
annotate("point", x=x_axis[score], y=y_axis[score], color="red") +
theme(plot.title=element_text(hjust=0.5),
panel.background=element_blank(),
axis.line=element_line(color="black"),
panel.border=element_rect(color="black", fill=NA, size=1))
ggeplot <- function(n, positions, x_axis, y_axis, title = "") {
score <- which.max(abs(y_axis))
DF <- data.frame(x_axis = x_axis, y_axis = y_axis)
ggplot2::ggplot(DF, aes(x = x_axis, y = y_axis)) +
ggplot2::geom_line() +
ggplot2::labs(
title = title,
y = "Running Enrichment Score",
x = "Position in Ranked List of Genes"
) +
ggplot2::geom_rug(data = data.frame(positions), aes(x = positions), inherit.aes = FALSE) +
ggplot2::geom_hline(yintercept = 0) +
ggplot2::geom_vline(xintercept = n / 2, linetype = "dotted") +
ggplot2::annotate("point", x = x_axis[score], y = y_axis[score], color = "red") +
ggplot2::annotate("text", x = x_axis[score] + n / 20, y = y_axis[score], label = round(y_axis[score], 2)) +
ggplot2::annotate("point", x = x_axis[score], y = y_axis[score], color = "red") +
ggplot2::theme(
plot.title = ggplot2::element_text(hjust = 0.5),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(color = "black"),
panel.border = ggplot2::element_rect(color = "black", fill = NA, linewidth = 1)
)
}
2 changes: 1 addition & 1 deletion R/ggvenn.R
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ ggvenn <- function(a, b, ga, gb, title="") {
paste(gb, " (", x.b, ")", sep=""))) %>%

ggplot(aes(x0=x, y0=y, r=c(r.a, r.b), fill=groups)) +
geom_circle(alpha=0.3, size=0.5) +
geom_circle(alpha=0.3, linewidth=0.5) +
coord_fixed() +
theme_void() +
theme(plot.title=element_text(hjust=0.5),
Expand Down
4 changes: 2 additions & 2 deletions R/hype.R
Original file line number Diff line number Diff line change
Expand Up @@ -117,8 +117,8 @@ hypeR <- function(signature,
weights <- NULL
signature.type <- "ranked"
}
data <- data.frame(matrix(ncol=7, nrow=0))
colnames(data) <- c("label", "pval", "fdr", "signature", "geneset", "overlap", "score")
data <- data.frame(matrix(ncol=8, nrow=0))
colnames(data) <- c("label", "score", "pval", "fdr", "geneset", "signature", "overlap", "hits")
results <- .ks_enrichment(signature=signature,
genesets=gsets.obj$genesets,
weights=weights,
Expand Down
228 changes: 126 additions & 102 deletions R/ks_enrichment.R
Original file line number Diff line number Diff line change
Expand Up @@ -16,75 +16,84 @@
y,
weights=NULL,
weights.pwr=1,
absolute=FALSE,
absolute=FALSE, # this is not really implemented, should be removed
plotting=FALSE,
plot.title="") {

n.y <- length(y)
err = list(score=0, pval=1, plot=ggempty())
if (n.y < 1 ) return(err)
if (any(y > n.x)) return(err)
if (any(y < 1)) return(err)

x.axis <- y.axis <- NULL
plot.title="")
{
n.y <- length(y)
err <- list(score = 0, pval = 1, leading_edge = NULL, leading_hits = NULL, plot = ggempty())
if (n.y < 1 || any(y > n.x) || any(y < 1) ) {
return(err)
}
x.axis <- y.axis <- NULL
leading_edge <- NULL # recording the x corresponding to the highest y value

## If weights are provided
if ( !is.null(weights) ) {
weights <- abs(weights[y])^weights.pwr

# If weights are provided
if (!is.null(weights)) {
weights <- abs(weights[y])^weights.pwr
Pmis <- rep(1, n.x); Pmis[y] <- 0; Pmis <- cumsum(Pmis); Pmis <- Pmis/(n.x-n.y)
Phit <- rep(0, n.x); Phit[y] <- weights; Phit <- cumsum(Phit); Phit <- Phit/Phit[n.x]
z <- Phit-Pmis

Pmis <- rep(1, n.x); Pmis[y] <- 0; Pmis <- cumsum(Pmis); Pmis <- Pmis/(n.x-n.y)
Phit <- rep(0, n.x); Phit[y] <- weights; Phit <- cumsum(Phit); Phit <- Phit/Phit[n.x]
z <- Phit-Pmis
score <- if (absolute) max(z)-min(z) else z[leading_edge <- which.max(abs(z))]

score <- if (absolute) max(z)-min(z) else z[which.max(abs(z))]

x.axis <- 1:n.x
y.axis <- z
x.axis <- 1:n.x
y.axis <- z
}
## Without weights
else {
y <- sort(y)
n <- n.x*n.y/(n.x + n.y)
hit <- 1/n.y
mis <- 1/n.x

# Without weights
} else {
y <- sort(y)
n <- n.x*n.y/(n.x + n.y)
hit <- 1/n.y
mis <- 1/n.x

Y <- sort(c(y-1, y))
Y <- Y[diff(Y) != 0]
y.match <- match(y, Y)
D <- rep(0, length(Y))
D[y.match] <- (1:n.y)
zero <- which(D == 0)[-1]
D[zero] <- D[zero-1]

z <- D*hit-Y*mis

score <- if (absolute) max(z)-min(z) else z[which.max(abs(z))]

x.axis <- Y
y.axis <- z

if (Y[1] > 0) {
x.axis <- c(0, x.axis)
y.axis <- c(0, y.axis)
}
if (max(Y) < n.x) {
x.axis <- c(x.axis, n.x)
y.axis <- c(y.axis, 0)
}
}
Y <- sort(c(y-1, y)) # append the positions preceding hits
Y <- Y[diff(Y) != 0] # remove repeated position
y.match <- match(y, Y) # find the hits' positions
D <- rep(0, length(Y))
D[y.match] <- (1:n.y)
zero <- which(D == 0)[-1]
D[zero] <- D[zero-1]

# One-sided Kolmogorov–Smirnov test
results <- suppressWarnings(ks.test(1:n.x, y, alternative="less"))
results$statistic <- score # Use the signed statistic

# Enrichment plot
p <- if (plotting) ggeplot(n.x, y, x.axis, y.axis, plot.title) else ggempty()

return(list(score=as.numeric(results$statistic),
pval=results$p.value,
plot=p))
z <- D*hit-Y*mis

score <- if (absolute) max(z)-min(z) else z[leading_edge <- which.max(abs(z))]

x.axis <- Y
y.axis <- z

if (Y[1] > 0) {
x.axis <- c(0, x.axis)
y.axis <- c(0, y.axis)
}
if (max(Y) < n.x) {
x.axis <- c(x.axis, n.x)
y.axis <- c(y.axis, 0)
}
}
leading_edge <- x.axis[leading_edge]
leading_hits <- intersect(x.axis[x.axis <= leading_edge], y)

## One-sided Kolmogorov–Smirnov test
results <- suppressWarnings(ks.test(1:n.x, y, alternative="less"))
results$statistic <- score # Use the signed statistic

## Enrichment plot
p <- if (plotting && n.y > 0) {
ggeplot(n.x, y, x.axis, y.axis, plot.title) +
geom_vline(xintercept = leading_edge, linetype = "dotted", color = "red", linewidth = 0.25)
} else {
ggempty()
}
return(list(
score = as.numeric(results$statistic),
pval = results$p.value,
leading_edge = leading_edge,
leading_hits = leading_hits,
plot = p
))
}

#' Enrichment test via one-sided Kolmogorov–Smirnov test
#'
#' @param signature A vector of ranked symbols
Expand All @@ -96,48 +105,63 @@
#' @return A list of data and plots
#'
#' @keywords internal
.ks_enrichment <- function(signature,
genesets,
weights=NULL,
weights.pwr=1,
absolute=FALSE,
plotting=TRUE) {

if (!is(genesets, "list")) stop("Error: Expected genesets to be a list of gene sets\n")
if (!is.null(weights)) stopifnot(length(signature) == length(weights))

signature <- unique(signature)
genesets <- lapply(genesets, unique)
.ks_enrichment <- function(
signature,
genesets,
weights = NULL,
weights.pwr = 1,
absolute = FALSE,
plotting = TRUE)
{
if (!is(genesets, "list")) stop("Error: Expected genesets to be a list of gene sets\n")
if (!is.null(weights)) stopifnot(length(signature) == length(weights))

results <- mapply(function(geneset, title) {
signature <- unique(signature)
genesets <- lapply(genesets, unique)

ranks <- match(geneset, signature)
ranks <- ranks[!is.na(ranks)]

# Run ks-test
results <- .kstest(n.x=length(signature),
y=ranks,
weights=weights,
weights.pwr=weights.pwr,
absolute=absolute,
plotting=plotting,
plot.title=title)

results[['geneset']] <- length(geneset)
results[['overlap']] <- length(ranks)
return(results)
results <- mapply( function(geneset, title) {
ranks <- match(geneset, signature)
ranks <- ranks[!is.na(ranks)]

}, genesets, names(genesets), USE.NAMES=TRUE, SIMPLIFY=FALSE)
## Run ks-test
results_in <- .kstest(
n.x = length(signature),
y = ranks,
weights = weights,
weights.pwr = weights.pwr,
absolute = absolute,
plotting = plotting,
plot.title = title
)
#results_in[["geneset"]] <- length(geneset)
results_in[["geneset"]] <- length(intersect(geneset, signature))
results_in[["overlap"]] <- length(results_in$leading_hits)
return(results_in)
}, genesets, names(genesets), USE.NAMES = TRUE, SIMPLIFY = FALSE)

results <- do.call(rbind, results)
data <- data.frame(apply(results[,c("score", "pval", "geneset", "overlap")], 2, unlist), stringsAsFactors=FALSE)
data$score <- signif(data$score, 2)
data$pval <- signif(data$pval, 2)
data$fdr <- signif(p.adjust(data$pval, method="fdr"), 2)
data$label <- names(genesets)
data$signature <- length(signature)
data <- data[,c("label", "pval", "fdr", "signature", "geneset", "overlap", "score")]
plots <- results[,"plot"]

return(list(data=data, plots=plots))
results <- do.call(rbind, results)
data <- data.frame(apply(results[, c("score", "pval", "geneset", "overlap")], 2, unlist),
stringsAsFactors = FALSE
)
## add list of genes in the leading edge
data <- data %>%
#dplyr::mutate(hits = sapply(results[, "leading_hits"], function(x) paste(signature[x], collapse = ",")))
dplyr::mutate(hits = sapply(results[, "leading_hits"], function(x) paste(signature[x], collapse = " , ")))
data$score <- signif(data$score, 2)
data$pval <- signif(data$pval, 2)
data$label <- names(genesets)
data$signature <- length(signature)
data$fdr <- signif(p.adjust(data$pval, method = "fdr"), 2)
data <- data %>%
dplyr::relocate(fdr, .after = pval) %>%
dplyr::relocate(signature, .after = geneset) %>%
dplyr::relocate(label) %>%
tibble::remove_rownames() # make sure this is OK
plots <- results[, "plot"]

return(list(
data = data,
plots = plots,
leading_hits = sapply(results[, "leading_hits"], function(x) signature[x])
))
}
12 changes: 6 additions & 6 deletions tests/testthat/test-hyp_dots.R
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ hyp_dots_tests <- function(hyp_obj, return_obj=FALSE) {
expect_silent(hyp_dots(hyp_obj, size_by="genesets"))
expect_silent(hyp_dots(hyp_obj, size_by="significance"))
expect_silent(hyp_dots(hyp_obj, size_by="none"))
p <- hyp_dots(hyp_obj, "gg")
p <- hyp_dots(hyp_obj)
expect_is(p, "gg")
if (return_obj) return(hyp_obj)
}
Expand All @@ -17,11 +17,11 @@ test_that("hyp_dots() is working", {
testdat <- readRDS(file.path(system.file("extdata", package="hypeR"), "testdat.rds"))
gsets_obj <- testdat$gsets
rgsets_obj <- testdat$rgsets

# Overrepresentation (signature)
signature <- testdat$signature
experiment <- testdat$experiment

hypeR(signature, gsets_obj, test="hypergeometric", background=100) %>%
hyp_dots_tests()
hypeR(signature, rgsets_obj, test="hypergeometric", background=100) %>%
Expand All @@ -31,7 +31,7 @@ test_that("hyp_dots() is working", {
expect_equal(length(p), 3)
expect_equal(names(p), c("Signature 1", "Signature 2", "Signature 3"))
expect_is(p[["Signature 3"]], "gg")

# Enrichment (ranked signature)
signature <- names(testdat$weighted_signature)
experiment <- lapply(testdat$weighted_experiment, names)
Expand All @@ -45,11 +45,11 @@ test_that("hyp_dots() is working", {
expect_equal(length(p), 3)
expect_equal(names(p), c("Signature 1", "Signature 2", "Signature 3"))
expect_is(p[["Signature 3"]], "gg")

# Enrichment (weighted signature)
signature <- testdat$weighted_signature
experiment <- testdat$weighted_experiment

hypeR(signature, gsets_obj, test="kstest") %>%
hyp_dots_tests()
hypeR(signature, rgsets_obj, test="kstest") %>%
Expand Down
Loading
Loading