This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser.
It uses the bokeh library for plotting and the Tornado Web Server.
Flight Review is deployed at https://review.px4.io.
This project is using Pipenv to keep control of our dependencies, pipenv helps us lock down dependencies and ensure deterministic releases.
- Python3 (3.6+ recommended)
- Pipenv, helps us lock down dependencies and ensure deterministic releases.
- SQLite3
- http://fftw.org/
sudo apt-get install sqlite3 fftw3 libfftw3-dev
Note: Under some Ubuntu and Debian environments you might have to install ATLAS
sudo apt-get install libatlas3-base
macOS already provides SQLite3. Use Homebrew to install fftw:
brew install fftw
- Install requirements (see above)
- Clone the repository
- Install dependencies
# After git clone, enter the directory
git clone https://github.com/PX4/flight_review.git
cd flight_review
# Ensure python 3+
pipenv --three
# Install deps from lock file
pipenv sync
Note: a requirements.txt
file is kept up to date (enforced in CI)
for advanced users wanting freedom from Pipenv
, see below for
updating the requirements file
# To update the requirements file
# make sure to include changes as a single independent commit
pipenv lock --requirements > requirements.txt
- By default the app will load
config_default.ini
configuration file - You can override any setting from
config_default.ini
with a user config fileconfig_user.ini
(untracked) - Any setting on
config_user.ini
has priority overconfig_default.ini
- Run
setup_db.py
to initialize the database.
# you can run the utility directly from pipenv
pipenv run python setup_db.py
# you can also run it from within the virtualenv
pipenv shell
./setup_db.py
Note: setup_db.py
can also be used to upgrade the database tables, for
instance when new entries are added (it automatically detects that).
For local usage, the server can be started directly with a log file name, without having to upload it first:
# run directly from pipenv
pipenv run python serve.py -f <file.ulg>
# you can also enter pipenv virtualenv
pipenv shell
python serve.py -f <file.ulg>
The plot_app
directory contains a bokeh server application for plotting. It
can be run stand-alone with bokeh serve --show plot_app
(or with cd plot_app; bokeh serve --show main.py
, to start without the html template).
The whole web application is run with the serve.py
script. Run ./serve.py -h
for further details.
The plotting can also be used interative using a Jupyter Notebook. It requires python knowledge, but provides full control over what and how to plot with immediate feedback.
- Install the Jupyter python package
- Start the notebook
- Locate and open the test notebook file
testing_notebook.ipynb
.
# Install jupyter (not installed by default)
pipenv install jupyter
# Launch jupyter notebook
pipenv run jupyter notebook testing_notebook.ipynb
# you can alternatively run jupyter directly if you enter the virtualenv
pipenv shell
jupyter notebook testing_notebook.ipynb
The web site is structured around a bokeh application in plot_app
(plot_app/configured_plots.py
contains all the configured plots). This
application also handles the statistics page, as it contains bokeh plots as
well. The other pages (upload, browse, ...) are implemented as tornado handlers
in tornado_handlers/
.
plot_app/helper.py
additionally contains a list of log topics that the plot
application can subscribe to. A topic must live in this list in order to be
plotted.
Tornado uses a single-threaded event loop. This means all operations should be non-blocking (see also http://www.tornadoweb.org/en/stable/guide/async.html). (This is currently not the case for sending emails).
Reading ULog files is expensive and thus should be avoided if not really necessary. There are two mechanisms helping with that:
- Loaded ULog files are kept in RAM using an LRU cache with configurable size (when using the helper method). This works from different requests and sessions and from all source contexts.
- There's a LogsGenerated DB table, which contains extracted data from ULog for faster access.
In addition to in-memory caching there is also some on-disk caching: KML files are stored on disk. Also the parameters and airframes are cached and downloaded every 24 hours. It is safe to delete these files (but not the cache directory).
Bokeh uses dynamic code loading and the plot_app/main.py
gets loaded on each
session (page load) to isolate requests. This also means we cannot use relative
imports. We have to use sys.path.append
to include modules in plot_app
from
the root directory (Eg tornado_handlers.py
). Then to make sure the same module
is only loaded once, we use import xy
instead of import plot_app.xy
.
It's useful to look at print('\n'.join(sys.modules.keys()))
to check this.
Contributions are welcome! Just open a pull request with detailed description why the changes are needed, or open an issue for bugs, feature requests, etc...