forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature : support Baichuan serial models (ggerganov#3009)
- Loading branch information
1 parent
3d2e41a
commit dec5f21
Showing
4 changed files
with
781 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
#!/usr/bin/env python3 | ||
# HF baichuan --> gguf conversion | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
import json | ||
import os | ||
import struct | ||
import sys | ||
from pathlib import Path | ||
from typing import TYPE_CHECKING, Any | ||
import itertools | ||
import gguf | ||
import numpy as np | ||
import torch | ||
from sentencepiece import SentencePieceProcessor # type: ignore[import] | ||
|
||
|
||
if TYPE_CHECKING: | ||
from typing import TypeAlias | ||
|
||
NDArray: TypeAlias = 'np.ndarray[Any, Any]' | ||
|
||
# reverse HF permute back to original pth layout | ||
|
||
|
||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: | ||
if n_kv_head is not None and n_head != n_kv_head: | ||
n_head //= n_kv_head | ||
|
||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||
.swapaxes(1, 2) | ||
.reshape(weights.shape)) | ||
|
||
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: | ||
r = weights.shape[0] // 3 | ||
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) | ||
|
||
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: | ||
r = weights.shape[0] // 3 | ||
return weights[r * n_part : r * n_part + r, ...] | ||
|
||
def count_model_parts(dir_model: str) -> int: | ||
num_parts = 0 | ||
|
||
for filename in os.listdir(dir_model): | ||
if filename.startswith("pytorch_model-"): | ||
num_parts += 1 | ||
|
||
if num_parts > 0: | ||
print("gguf: found " + str(num_parts) + " model parts") | ||
|
||
return num_parts | ||
|
||
|
||
|
||
def parse_args() -> argparse.Namespace: | ||
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") | ||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | ||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | ||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") | ||
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) | ||
return parser.parse_args() | ||
|
||
args = parse_args() | ||
|
||
dir_model = args.model | ||
ftype = args.ftype | ||
if not dir_model.is_dir(): | ||
print(f'Error: {args.model} is not a directory', file = sys.stderr) | ||
sys.exit(1) | ||
|
||
# possible tensor data types | ||
# ftype == 0 -> float32 | ||
# ftype == 1 -> float16 | ||
|
||
# map from ftype to string | ||
ftype_str = ["f32", "f16"] | ||
|
||
if args.outfile is not None: | ||
fname_out = args.outfile | ||
else: | ||
# output in the same directory as the model by default | ||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' | ||
|
||
print("gguf: loading model "+dir_model.name) | ||
|
||
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | ||
hparams = json.load(f) | ||
print("hello print: ",hparams["architectures"][0]) | ||
if hparams["architectures"][0] != "BaichuanForCausalLM": | ||
print("Model architecture not supported: " + hparams["architectures"][0]) | ||
|
||
sys.exit() | ||
|
||
# get number of model parts | ||
num_parts = count_model_parts(dir_model) | ||
print(f"num_parts:{num_parts}\n") | ||
ARCH=gguf.MODEL_ARCH.BAICHUAN | ||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | ||
|
||
print("gguf: get model metadata") | ||
|
||
block_count = hparams["num_hidden_layers"] | ||
head_count = hparams["num_attention_heads"] | ||
|
||
if "num_key_value_heads" in hparams: | ||
head_count_kv = hparams["num_key_value_heads"] | ||
else: | ||
head_count_kv = head_count | ||
|
||
if "_name_or_path" in hparams: | ||
hf_repo = hparams["_name_or_path"] | ||
else: | ||
hf_repo = "" | ||
|
||
if "max_sequence_length" in hparams: | ||
ctx_length = hparams["max_sequence_length"] | ||
elif "max_position_embeddings" in hparams: | ||
ctx_length = hparams["max_position_embeddings"] | ||
elif "model_max_length" in hparams: | ||
ctx_length = hparams["model_max_length"] | ||
else: | ||
print("gguf: can not find ctx length parameter.") | ||
|
||
sys.exit() | ||
|
||
|
||
gguf_writer.add_name(dir_model.name) | ||
gguf_writer.add_source_hf_repo(hf_repo) | ||
gguf_writer.add_tensor_data_layout("Meta AI original pth") | ||
gguf_writer.add_context_length(ctx_length) | ||
gguf_writer.add_embedding_length(hparams["hidden_size"]) | ||
gguf_writer.add_block_count(block_count) | ||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | ||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) | ||
gguf_writer.add_head_count(head_count) | ||
gguf_writer.add_head_count_kv(head_count_kv) | ||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) | ||
|
||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: | ||
if "type" in hparams["rope_scaling"]: | ||
if hparams["rope_scaling"]["type"] == "linear": | ||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"]) | ||
|
||
|
||
# TOKENIZATION | ||
|
||
print("gguf: get tokenizer metadata") | ||
|
||
tokens: list[bytes] = [] | ||
scores: list[float] = [] | ||
toktypes: list[int] = [] | ||
|
||
tokenizer_model_file = dir_model / 'tokenizer.model' | ||
if not tokenizer_model_file.is_file(): | ||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) | ||
sys.exit(1) | ||
|
||
# vocab type sentencepiece | ||
print("gguf: get sentencepiece tokenizer vocab, scores and token types") | ||
|
||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) | ||
|
||
for i in range(tokenizer.vocab_size()): | ||
text: bytes | ||
score: float | ||
|
||
piece = tokenizer.id_to_piece(i) | ||
text = piece.encode("utf-8") | ||
score = tokenizer.get_score(i) | ||
|
||
toktype = 1 # defualt to normal token type | ||
if tokenizer.is_unknown(i): | ||
toktype = 2 | ||
if tokenizer.is_control(i): | ||
toktype = 3 | ||
|
||
# toktype = 4 is user-defined = tokens from added_tokens.json | ||
|
||
if tokenizer.is_unused(i): | ||
toktype = 5 | ||
if tokenizer.is_byte(i): | ||
toktype = 6 | ||
|
||
tokens.append(text) | ||
scores.append(score) | ||
toktypes.append(toktype) | ||
|
||
added_tokens_file = dir_model / 'added_tokens.json' | ||
if added_tokens_file.is_file(): | ||
with open(added_tokens_file, "r", encoding="utf-8") as f: | ||
addtokens_json = json.load(f) | ||
|
||
print("gguf: get added tokens") | ||
|
||
for key in addtokens_json: | ||
tokens.append( key.encode("utf-8") ) | ||
scores.append(-1000.0) | ||
toktypes.append(4) # user-defined token type | ||
|
||
|
||
gguf_writer.add_tokenizer_model("llama") | ||
gguf_writer.add_token_list(tokens) | ||
gguf_writer.add_token_scores(scores) | ||
gguf_writer.add_token_types(toktypes) | ||
|
||
special_vocab = gguf.SpecialVocab(dir_model) | ||
special_vocab.add_to_gguf(gguf_writer) | ||
|
||
# TENSORS | ||
|
||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count) | ||
|
||
# tensor info | ||
print("gguf: get tensor metadata") | ||
|
||
if num_parts == 0: | ||
part_names = iter(("pytorch_model.bin",)) | ||
else: | ||
part_names = ( | ||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||
) | ||
|
||
|
||
for part_name in part_names: | ||
if args.vocab_only: | ||
break | ||
print("gguf: loading model part '" + part_name + "'") | ||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||
|
||
tmp=model_part | ||
for i in range(block_count): | ||
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: | ||
print(f"Unpacking and permuting layer {i}") | ||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) | ||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) | ||
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) | ||
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] | ||
|
||
for name in model_part.keys(): | ||
data = model_part[name] | ||
# we don't need these | ||
if name.endswith(".rotary_emb.inv_freq"): | ||
continue | ||
|
||
old_dtype = data.dtype | ||
|
||
# convert any unsupported data types to float32 | ||
if data.dtype != torch.float16 and data.dtype != torch.float32: | ||
data = data.to(torch.float32) | ||
|
||
data = data.squeeze().numpy() | ||
|
||
# map tensor names | ||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | ||
if new_name is None: | ||
print("Can not map tensor '" + name + "'") | ||
sys.exit() | ||
|
||
n_dims = len(data.shape) | ||
data_dtype = data.dtype | ||
|
||
# if f32 desired, convert any float16 to float32 | ||
if ftype == 0 and data_dtype == np.float16: | ||
data = data.astype(np.float32) | ||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||
data = data.astype(np.float32) | ||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16 | ||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||
data = data.astype(np.float16) | ||
|
||
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||
gguf_writer.add_tensor(new_name, data) | ||
|
||
|
||
print("gguf: write header") | ||
gguf_writer.write_header_to_file() | ||
print("gguf: write metadata") | ||
gguf_writer.write_kv_data_to_file() | ||
if not args.vocab_only: | ||
print("gguf: write tensors") | ||
gguf_writer.write_tensors_to_file() | ||
|
||
gguf_writer.close() | ||
|
||
print(f"gguf: model successfully exported to '{fname_out}'") | ||
print("") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.