chika
is a simple and easy config tool for hierarchical configurations.
- Python>=3.10
pip install -U chika
or
pip install -U git+https://github.com/moskomule/chika
Write typed configurations using chika.config
, which depends on dataclass
.
# main.py
import enum
import chika
@chika.config
class ModelConfig:
name: str = chika.choices('resnet', 'densenet')
depth: int = 10
@chika.config
class DataConfig:
# values that needs to be specified
name: str = chika.required(help="name of dataset")
class Optims(str, enum.Enum):
# currently, only StrEnum is supported
sgd = "sgd"
adam = "adam"
@chika.config
class OptimConfig:
name: Optims = Optims.sgd
steps: list[int] = chika.sequence(100, 150)
@chika.config
class BaseConfig:
model: ModelConfig
data: DataConfig
optim: OptimConfig
seed: int = chika.with_help(1, help="random seed")
use_amp: bool = False
gpu: int = chika.choices(*range(torch.cuda.device_count()), help="id of gpu")
Then, wrap the main function with chika.main(BaseConfig)
.
@chika.main(BaseConfig)
def main(cfg: BaseConfig):
set_seed(cfg.seed)
model = ModelRegistry(cfg.model)
...
Now, main.py
can be executed as...
python main.py --use_amp
# cfg.use_amp == True
python main.py --model config/densenet.yaml
# cfg.model.name == densenet
# cfg.model.depth == 12
python main.py --model config/densenet.yaml --model.depth 24
# cfg.model.name == densenet
# cfg.model.depth == 24
python main.py --optim.decay_steps 120 150
# config.optim.decay_steps == [120, 150]
python main.py -h
#usage: test.py [-h] [--model MODEL] [--model.name {resnet,densenet}] [--model.depth MODEL.DEPTH] [--data DATA] --data.name DATA.NAME [--optim OPTIM] [--optim.steps OPTIM.STEPS [OPTIM.STEPS ...]]
# [--seed SEED] [--use_amp] [--gpu {1,2,3}]
#
#optional arguments:
# -h, --help show this help message and exit
# --model MODEL load {yaml,yml,json} file for model if necessary
# --model.name {resnet,densenet}
# (default: 'resnet')
# --model.depth MODEL.DEPTH
# (default: 10)
# --data DATA load {yaml,yml,json} file for data if necessary
# --data.name DATA.NAME
# name of dataset (required) (default: None)
# --optim OPTIM load {yaml,yml,json} file for optim if necessary
# --optim.steps OPTIM.STEPS [OPTIM.STEPS ...]
# (default: [100, 150])
# --seed SEED random seed (default: 1)
# --use_amp (default: False)
# --gpu {1,2,3} id of gpu (default: 1)
Child configs can be updated via YAML or JSON files.
An example of YAML file (e.g. config/densenet.yaml
)
name: densenet
depth: 12
An example of JSON file (e.g. config/densenet.json
)
{
"name": "densenet",
"depth": 12
}
For chika.Config
, the following functions are prepared:
def with_help(default, help): ...
# add help message
def choices(*values, help): ...
# add candidates that should be selected
def sequence(*values, size, help): ...
# add a list. size can be specified
def required(*, help): ...
# add a required value
def bounded(default, _from, _to, *help): ...
# add boundaries
change_job_dir=True
creates a unique directory for each run.
@chika.main(BaseConfig, change_job_dir=True)
def main(cfg):
print(Path(".").resolve())
# /home/user/outputs/0901-122412-558f5a
print(Path(".") / "weights.pt")
# /home/user/outputs/0901-122412-558f5a/weights.pt
print(chika.original_path)
# /home/user
print(chika.resolve_original_path("weights.pt"))
# /home/user/weights.pt
from chika import ChikaConfig
cfg = ChikaConfig.from_dict(...)
cfg.to_dict()
# {"model": {"name": "resnet", "zero_init": True, ...}, ...}
- Configs cannot be nested twice or more than twice.
Config(Config(...))
is valid, butConfig(Config(Config(...)))
is invalid.