Releases: mroodschild/froog
Version 0.5.1
13/10/2021
====== Version 0.5.1 =======
EJML 0.41
Version 0.5
08/08/2019
====== Version 0.5 =======
Class
Layer -> Dense
Package
TrainingAlgorithm -> optimizer
Optimizer:
Backpropagation, CG, SCG, SGD
improvement print screen and log
Performance
abstract Z in activation functions
0.4
01/10/2018
====== Version 0.4 =======
Performance Improvements
time execution reduced by 50% in SCG (Scaled Conjugate Gradient)
EJML Updated 0.34 -> 0.36
Accelerate Methods
- Momentum
- Momentum Rumelhart
- Adam (Adaptive moment estimation)
Version 0.3
24/04/2018
====== Version 0.3 =======
Performance Improvements
time execution reduced by 75%
Internal Architecture Vectorized
EJML Updated 0.30 -> 0.34
Neural Network
- removed outputAll
Feedforward
- outputLayers -> activations
- activationsDropout
- fixed getParameters
Layers
- outputDropout
Initializations
- HeInit
LossFunctions
- Improvement CrossEntropy
- Added Logistic Loss Function
- MSE vectorized
- RMSE vectorized
Backpropagation
- removed gradient
- removed minibatch
- fixed L2 regularization
- Performance incresed
Training Algorithms
- Conjugate Gradient Added
- Scaled Conjugate Gradient Added
- Scaled Conjugate Gradient with minibatch added
- Clean SGD
- SGD Numeric Added
- TrainingALgorithm Reorganized
Beta Rules Added for Conjugate Gradient
- Fletcher Reeves
- PolakRebiere
Gradients
- DropoutGradient
- NoiseGradient
- NumericGradient
- StandardGradient
- Gradient
- GradientFactory
Update Rules
- Momentum
- SGC
- Update
- UpdateRule
TransferFunctions
- update EJML 0.30 -> 0.34
Test Added
Initial Realease
- Feedforward
- Layer
- Logsig
- Tansig
- Softplus
- Open
- Save
- SGD
- Confusion Matrix
- RMSE
- MSE
- CrossEntropy
- Initialization