Skip to content

Commit

Permalink
Merge pull request #7 from marcolenci/work_in_progress
Browse files Browse the repository at this point in the history
committ on leap day
  • Loading branch information
mseri authored Feb 29, 2024
2 parents eabe886 + 569fb59 commit cdb1c31
Showing 1 changed file with 35 additions and 19 deletions.
54 changes: 35 additions & 19 deletions BET/Birkhoff.lean
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import Mathlib.Tactic
import Mathlib.Dynamics.OmegaLimit
import Mathlib.Dynamics.Ergodic.AddCircle
import Mathlib.Dynamics.BirkhoffSum.Average

/-!
# Birkhoff's ergodic theorem
Expand All @@ -21,41 +22,56 @@ section Ergodic_Theory

open BigOperators MeasureTheory

/- standing assumptions: `f` is a measure preserving map of a probability space `(α, μ)`, and
`g : α → ℝ` is integrable. -/

variable {α : Type _} [MetricSpace α] [CompactSpace α] [MeasurableSpace α] [BorelSpace α]
{μ : MeasureTheory.Measure α} [IsProbabilityMeasure μ] {f : α → α}
(hf : MeasurePreserving f μ) {g : α → ℝ} (hg : Integrable g μ)
/-
- `T` is a measure preserving map of a probability space `(α, μ)`,
- `f g : α → ℝ` are integrable.
-/
variable {α : Type _} [MeasurableSpace α]
variable {μ : MeasureTheory.Measure α} [MeasureTheory.IsProbabilityMeasure μ]
variable {T : α → α} (hT : MeasurePreserving T μ)
variable {f g : α → ℝ} (hf : Integrable f μ) (hg : Integrable g μ)
variable (x : α)
variable (n : ℕ)

#check birkhoffAverage ℝ T f n x

/- Define Birkhoff sums. -/
noncomputable def birkhoffSum {α : Type _} (f : α → α) (g : α → ℝ) (n : ℕ) (x : α) : ℝ :=
1 / n * (∑ i in Finset.range n, g (f^[i] x))

/- define `A := { x | sup_n ∑_{i=0}^{n} f(T^i x) = ∞}`. -/

/- Define the invariant sigma-algebra of `f` -/
/- `A` is in `I = inv_sigma_algebra`. -/

/- define `Φ_n : max { ∑_{i=0}^{n} φ ∘ T^i }_{k ≤ n}` -/

/- ∀ `x ∈ A`, `Φ_{n+1}(x) - Φ_{n}(T(x)) = φ(x) - min(0,Φ_{n}(T(x))) ≥ φ(x)` decreases to `φ(x)`. -/

/- Main lemma to prove Birkhoff ergodic theorem:
assume that the integral of `g` on any invariant set is strictly negative. Then, almost everywhere,
the Birkhoff sums `S_n g x` are bounded above.
-/
/- Using dominated convergence, `0 ≤ ∫_A (Φ_{n+1} - Φ_{n}) dμ = ∫_A (Φ_{n+1} - Φ_{n} ∘ T) dμ → ∫_A φ dμ`. -/

/- `(1/n) ∑_{k=0}^{n-1} φ ∘ T^k ≤ Φ_n / n`. -/

/- Deduce Birkhoff theorem from the main lemma, in the form that almost surely, `S_n f / n`
converges to the conditional expectation of `f` given the invariant sigma-algebra. -/
/- If `x ∉ A`, `limsup_n (1/n) ∑_{k=0}^{n-1} φ ∘ T^i ≤ 0`. -/

/- If conditional expection of `φ` is negative, i.e., `∫_C φ dμ = ∫_C φ|_inv_sigmal_algebra dμ < 0` for all `C` in `inv_sigma_algebra` with `μ(C) > 0`,
then `μ(A) = 0`. -/

/- If `f` is ergodic, show that the invariant sigma-algebra is ae trivial -/
/- Then (assumptions as prior step) `limsup_n (1/n) ∑_{k=0}^{n-1} φ ∘ T^i ≤ 0` a.e. -/

/- Let `φ = f - f|_I - ε`. -/

/- Show that the conditional expectation with respect to an ae trivial subalgebra is ae
the integral. -/
/- `f_I ∘ T = f|_I` and so `(1/n) ∑_{k=0}^{n-1} f ∘ T^k = (1/n) ∑_{k=0}^{n-1} f ∘ T^k - f_I - ε`. -/

/- `limsup_n (1/n) ∑_{k=0}^{n-1} f ∘ T^i ≤ f|_I + ε` a.e. -/

/- Replacing `f` with `-f` we get the lower bound. -/

/- Birkhoff's theorem: Almost surely, `birkhoffAverage ℝ f g n x` converges to the conditional expectation of `f`. -/

/- If `T` is ergodic, show that the invariant sigma-algebra is a.e. trivial. -/

/- Show that the conditional expectation with respect to an a.e. trivial subalgebra is a.e.
the integral. -/

/- Give Birkhoff theorem for ergodic maps -/
/- Birkhoff theorem for ergodic maps. -/


end Ergodic_Theory

0 comments on commit cdb1c31

Please sign in to comment.