- Clone this repository
- In the repository directory, run
mkdir results
- To replicate our environment use the
env.yml
we have provided. The following commands should create a proper environment:
conda env create -f env.yml
conda activate ped_VLM
The folder structure should now be as follows:
└── rootFolder
├── Ped_Dataset/
├── train.json
├── val.json
├── test.json
├── test_coco.json
├── image_id.json
├── data/
├── JAAD/opticalflow
├── JAAD/images
├── PIE/opticalflow
├── PIE/images
├── data/Titan/images_anonymized/clip_xx/opticalflow/
├── data/Titan/images_anonymized/clip_xx/images/
- To run training, run
python train.py --batch-size [BATCH SIZE] --epochs [EPOCHS] --lm {T5-Base, T5-Large}
. For more information on other hyperparameters such as loading checkpoints or altering learning rate, weight decay, or the hidden size for gated pooling attention, runpython train.py --help
.