Skip to content
/ rshf Public

Remote sensing pretrained models easy loading using huggingface -- PyTorch

License

Notifications You must be signed in to change notification settings

mvrl/rshf

Repository files navigation

rshf

PyPI - Version PyPI Downloads PyPI Docs

Remote sensing pretrained models easy loading using huggingface -- PyTorch (for fast benchmarking)

Installation:

pip install rshf

Example:

from rshf.satmae import SatMAE
model = SatMAE.from_pretrained("MVRL/satmae-vitlarge-fmow-pretrain-800")
input = model.transform(torch.randint(0, 256, (224, 224, 3)).float().numpy(), 224).unsqueeze(0)
print(model.forward_encoder(input, mask_ratio=0.0)[0].shape)

TODO:

Citations

Model Type Venue Citation
BioCLIP CVPR'24 link
CLIP ICML'21 link
CROMA NeurIPS'23 link
GeoCLAP BMVC'23 link
GeoCLIP NeurIPS'23 link
Presto link
Prithvi link
RemoteCLIP TGRS'23 link
RVSA TGRS'22 link
Sat2Cap EarthVision'24 link
SatClip link
SatMAE NeurIPS'22 link
SatMAE++ CVPR'24 link
ScaleMAE ICCV'23 link
SenCLIP WACV'25 link
SINR ICML'23 link
StreetCLIP link
TaxaBind WACV'25 link

List of models available here: Link

About

Remote sensing pretrained models easy loading using huggingface -- PyTorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages