Skip to content

namas191297/artgan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ArtGAN: Artwork Restoration using Generative Adversarial Networks

  • To install dependences:

Ideally create a new conda enviroment with python==3.6

Then install a GPU-enabled pytorch==1.6.0, torchvision=0.7.0

Finally from the conda env, run the extra dependencies if they are not already satified

pip install -r pip_requirements.txt

  • To train and validate the model per epoch run:

python train.py --model_dir=experiments/base_model --data_dir=/path/to/Dataset

Default value for model_dir is `experiments/base_model`

Change the `/path/to/Dataset` to the correct path of the ArtNet

Also, to change the hyper-parameters, refer to the params.json file since everything is controlled from there.

  • To run inference on the model:

python inference.py --model_dir=experiments/base_model --data_dir=/path/to/Dataset -- restore_from=/path/to/best_weights/checkpoint.pth.tar

Change the `/path/to/Dataset` to the correct path of the ArtNet

Change the `/path/to/best_weights/checkpoint.pth.tar` to the correct path of the pre-trained checkpoint (the default value is `experiments/best_model/best_weights/best_after_epoch_163.pth.tar`)

Finally, if you used any of the ARTGAN code, please cite the following paper:

"A. Adhikary, N. Bhandari, E. Markou and S. Sachan, "ArtGAN: Artwork Restoration using Generative Adversarial Networks," 2021 13th International Conference on Advanced Computational Intelligence (ICACI), 2021, pp. 199-206, doi: 10.1109/ICACI52617.2021.9435888."

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages