-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a couple of notebooks to start from
- Loading branch information
1 parent
6f40e9e
commit 401d054
Showing
2 changed files
with
395 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "2c23f7af", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%aiida\n", | ||
"import aiida_nanotech_empa.utils.stm_tools as stm\n", | ||
"import aiida_nanotech_empa.utils.gaussian_wcs_postprocess as pp\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"import ipywidgets as ipw\n", | ||
"from IPython.display import clear_output" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "6a09415c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"node = load_node(1081)\n", | ||
"out = ipw.Output()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "9cfd3ffc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cpa = node.outputs.gs_cube_planes\n", | ||
"cpa_dict = stm.process_cube_planes_array(cpa) # changes for different multiplicity" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "9230c09b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def replot(_=None):\n", | ||
" with out:\n", | ||
" clear_output()\n", | ||
" #pp.plot_cube_images(node.outputs.gs_cube_images)\n", | ||
" sop = dict(node.outputs.gs_out_params) # different for different multiplicity\n", | ||
" _fig, axs = plt.subplots(nrows=1, ncols=5)\n", | ||
" i_spin = 0\n", | ||
" stm.plot_mapping(sop, cpa, orbitals.value, spin.value, kind='orb', h=heights.value, ax=axs[3], extrap_h=3.0, fwhm=0.05)\n", | ||
" #plt.plot()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "8baa4d3a", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"2" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"sop = dict(node.outputs.gs_out_params) # different for different multiplicity\n", | ||
"len(sop['homos']) # finding how many spins are there." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "24ee5e1c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"orbitals = ipw.Dropdown(description=\"Orbitals\", options = sorted(cpa_dict['mo_planes'].keys()))\n", | ||
"orbitals.observe(replot, names='value')\n", | ||
"extrapolation_planes = ipw.Dropdown(description=\"Extrapolation planes\", options = cpa_dict['heights'])\n", | ||
"extrapolation_planes.observe(replot, names='value')\n", | ||
"heights = ipw.FloatSlider(description=\"Heights\", value=extrapolation_planes.value+3)\n", | ||
"ipw.dlink((extrapolation_planes, 'value'), (heights, 'max'), transform=lambda v: v+5.0)\n", | ||
"ipw.dlink((extrapolation_planes, 'value'), (heights, 'min'))\n", | ||
"heights.observe(replot, names='value')\n", | ||
"spin = ipw.Dropdown(description='Spin:', value = 0, options= {'Up': 0, 'Down':1})\n", | ||
"spin.observe(replot, names='value')\n", | ||
"kind = ipw.Dropdown(description=\"Kind\", options = [('Orbital', 'orb'), ('Orbitalˆ2', 'orb2'), ('STS','sts')])\n", | ||
"kind.observe(replot, names='value')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "ad3eb18e", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "c2c93474b6eb4f7ea8ab213b0ee839d1", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Dropdown(description='Orbitals', options=(0, 1, 2, 3, 4, 5, 6, 7, 8), value=0)" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "3790e4012a494e69b85419fc1a548966", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Dropdown(description='Extrapolation planes', options=(3.0, 4.0), value=3.0)" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "a74b65ad8b4945eea5a1b76cf12118ce", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"FloatSlider(value=6.0, description='Heights', max=8.0, min=3.0)" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "33b47df773304fb48b98246d5b6bcdeb", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Dropdown(description='Spin:', options={'Up': 0, 'Down': 1}, value=0)" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "c4d39f51fde04bd1a9051b3db33be682", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Dropdown(description='Kind', options=(('Orbital', 'orb'), ('Orbitalˆ2', 'orb2'), ('STS', 'sts')), value='orb')" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "b37028f76778450391db70b730cc68fe", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Output()" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh2ElEQVR4nO3dfZAcd53f8fdXWq1Wsgw2WAGkkR+WNWtJRnZOuwZ8XEJyIXpIkILugbUpjC0ujoJ9hKtUCh8V7s5c6pBzlaqLkX2KuBjHYElAHXjFg6QQOz4bzkZeufCDZOxdeZG1K3PoOStZq33QN3/0tLanp2e2dzX7MD2fV1XXPP2mp/er1md/++vu35i7IyIi2TJjqjdAREQqT+EuIpJBCncRkQxSuIuIZJDCXUQkgxTuIiIZNGq4m9lDZvZrM3u5xOtmZvebWZeZvWhmv1H5zZx+VJdiqomkof1kcqTpuT8MrCzz+irg2vxyJ/DXF79ZVeFhVJe4h1FNZHQPo/1kwo0a7u7+FHC8TJO1wCMeeBa4zMzeU6kNnK5Ul2KqiaSh/WRy1FVgHQuBQ5HHPfnn3ow3NLM7CX4Tc8kllyy/7rrrKvDxU+f666+nq6uLlpaWost83/72t/Pud7/7TjO7393nU6Iuqklt7Cuj2bt379F8TaSGMyWN1PuKu4+6AFcDL5d47YfAhyOPHweWj7bO5cuXe7Xr7u72pUuXJr62evVqf/rppx3o8JR1UU2yW5fRhDWplUWZMn5p95VKnC3TAyyKPM4Bhyuw3qqWy+U4dOhQwVPUeF1UE0lJmVIBlQj3HcBt+SPcHwROuXvRn0+1Zs2aNTzyyCMAqC4B1URSUqZUwKhj7ma2DfgIcIWZ9QB/CswCcPfNwI+A1UAX8BZwx0Rt7HRyyy238OSTT3L06FFyuRz33nsvg4ODAGzYsIHVq1fzox/9COB64GvUQF1UE0lDmTI5zKdoyt+Wlhbv6OiYks+eTGa2191b0rRVTZLVQl3GWhMpVgv7CaTfV3SFqohIBincRUQySOEuIpJBCncRkQxSuIuIZJDCXUQkgxTuIiIZpHAXEckghbuISAYp3EVEMkjhLiKSQQp3EZEMUriLiGSQwl1EJIMU7iIiGaRwFxHJIIW7iEgGKdxFRDJI4S4ikkEKdxGRDFK4i4hkkMJdRCSDFO4iIhmkcBcRySCFu4hIBincRUQySOEuIpJBCncRkQxSuIuIZJDCXUQkgxTuIiIZpHAXEckghbuISAYp3EVEMkjhLiKSQanC3cxWmtmrZtZlZvckvP52M/u+mb1gZvvM7I7Kb+r0smvXLpqbm2lqamLjxo1Fr586dYqPfexjAEtUk0At1kSSKVMm3qjhbmYzgQeAVcAS4BYzWxJrdhew391vAD4C/Dczq6/wtk4bw8PD3HXXXezcuZP9+/ezbds29u/fX9DmgQceYMmSJQD7UU2A2quJJFOmTI40PfebgC53f93dB4DtwNpYGwcuNTMD5gHHgaGKbuk0smfPHpqammhsbKS+vp62tjba29sL2pgZfX194UPVhNqriZSkTJkEacJ9IXAo8rgn/1zUJmAxcBh4CfgP7n4+viIzu9PMOsys48iRI+Pc5KnX29vLokWLLjzO5XL09vYWtLn77rt55ZVXAJahmgDpawLZqYskUqZMgjThbgnPeezxCuDnwALgRmCTmb2t6E3uW9y9xd1b5s+fP8ZNnT7c4z9+0CuN2r17NzfeeCPAi6gmQPqa5NeXibpIImXKJEgT7j3AosjjHMFv06g7gO96oAvoBq6rzCZOP7lcjkOHRjoePT09LFiwoKDN17/+ddatWweAahKotZpIScqUSZAm3J8DrjWza/IHNNqAHbE2bwC/DWBm7wKagdcruaHTSWtrK52dnXR3dzMwMMD27dtZs2ZNQZsrr7ySxx9/HFBNQrVWEylJmTIJ6kZr4O5DZnY3sBuYCTzk7vvMbEP+9c3AnwMPm9lLBH9yfcHdj07gdk+puro6Nm3axIoVKxgeHmb9+vUsXbqUzZs3A7Bhwwa+9KUvcfvtt0NwNsDjqCY1VxNJpkyZHJY0VjoZWlpavKOjY0o+ezKZ2V53b0nTVjVJVgt1GWtNpFgt7CeQfl/RFaoiMmXM7Jdm9i+mejuySOEuUqXywThgZlfEnv+5mbmZXR157mYze8LM+szsVP7qzyWR1z9oZj82s+NmdsTMvmNm7xnndt1qZgfN7IyZPWZm7xj3DynjpnAXqW7dwC3hAzN7PzAn2sDMPgT8b6Cd4NTCa4AXgJ+aWWO+2eXAFuBq4CqgD/j6WDfGzJYC/wP4FPAu4C3gwbGuRy6ewl2kun0DuC3y+NPAI7E2/xV4xN3/u7v3uftxd//PwLPAnwG4+053/467/z93f4vgIqLfLPWhZna7mb2e/0ug28w+mX/pk8D33f0pdz8NfAlYZ2aXlvkZbjSzF/N/UXzLzBoin/Nv8/PPHDezHWa2IPKam9lnzazTzPqSV127FO4i1e1Z4G1mtjg/Z8sngG+GL5rZXOBm4DsJ7/028NES6/0nwL6kF8zsEuB+YJW7X5pf/8/zLy8l+KsAAHc/AAwA7yvzM/w+sJLgL4plwO35z/nnwFfyr78HOEgwVUHUSmA58MEy669JCneR6hf23j8K/AKIzvvwDoL/528mvO9N4Ir4k2a2DPgT4D+V+czzwPVmNsfd33T38BfBPOBUrO0poFzP/X53P+zux4HvE1yRCsFfAQ+5+/Pufg74Y+BD0WMJwH35vzYSfxHVMoW7SPX7BnArQY83PiRzgiCIkw6OvgcoOHfczJqAnQRzuTyd9GHufobgL4QNwJtm9kMzC68ePQ3Epwl4G8EYfim/itx/i+AXBATHBw5GPvc0cIzCeWj+ocx6a5rCXaTKuftBggOrq4Hvxl47AzwD/F7CW3+f4GIyAMzsKuD/AH/u7t8Y5TN3u/tHCX5B/AL4Wv6lfcANkXU2ArOB18b2UwHBlARXRdZ1CfBOCv8ykRJGvUJVRKrCZ4DL3f2MmcX/X98D7DazXxCcAVMH/EfgQ0ArgJktBJ4AHshfIVpSfjqADxD8YjhL0Fsfzr/8KPCMmf0W8DzwZYI5YsZzwHMrsN3MtgKvAH8B/MzdfzmOddUc9dxFMsDdD7h74uWZ7v4TglkW1xGMsx8E/jHwYXfvzDf7A6AR+FMzOx0uJT5uBsEvh8ME86z/U+Cz+c/aRzBc8yjwa4Kx9s+O82d6nOBsm7/Nb/d7CeahkRTUcxepUu5+dYnnh4hNq5sP+I+UWde9wL0pP/dNgkAv9fpWgl53mnVdHXv8Z7HHm4HEvyTcPWnqYMlTz11EJIMU7iIiGaRwFxHJIIW7iEgGKdxFqpSmy5VyFO4iGWVmc83sQTM7mp+U66kybd9hZt/LT9N70MxuLdP2djMbjp4ymV8WlHpPyu293sx257e36FuEEj5v2My+ejGfmWU6FVIku7YQ/B9fTHA++o1l2j5AMMHXu/LtfmhmL5SZs+UZd/9w5TYVgEGCycweBB6Lv+ju4bQE4dWq/0DyhGiCeu4i1S5xulwzawbWAHe6+xF3H3b3vUkryAfl7wBfcvfT+XPidxDMyT5p3P1Vd/+flJiNMuZ3CS6SSpz/RhTuItUucbpcgukBDgL35oc5XjKz3ymxjvcBw+4enf/lBYLpe8fMzH5gZidLLD8YzzoTfJpgjvqp+RLoKqBhGZHqdr+7HwYws+h0uTngeoJL9xcQzCPzQzPb7+6vxNYxnml6P2hmJyOPj7n7ewHc/V+P4+dIzcyuJLhC9jMT+TnVTj13kepWarrcswRj2P/F3Qfc/e+A/wv8y4R1jGea3mfd/bLI8t6xbLSZfTJyYHTnWN5LMHf9T9y9e4zvqykKd5FsenEMbV8D6szs2shzN5Bu7LuIme1MOLOlIMjd/VF3n5dfVo3xI24D/td4tq2WKNxFsukp4A3gj82szsx+k2DisN3xhvk5378LfNnMLsm3XUvwJSBj5u6rIsEdX0oGuQUagPr84wYzmx1rczPBl3XoLJlRKNxFMsjdBwkCejXB+PnXgNvc/RcAZvbF2HDIZ4E5BGegbAP+/ShfXfehhF5560Vu9lUEw0nh554FXo21+TQJ88Pnx+ElQgdURapUiuly9xEcSE1671/EHh8H/k3Kz30YeDjtdqaV/xKOstP4uvu/K/H8Gy0tLZXepKqmnruISAYp3EVEMkjhLiKSQQp3EZEM0gFVkWp0/vzEXXY/NDS+99VNQJzMmKHvSR0n9dxFZMR4gz1878W8XypKPXcRqWwoh+uaiJ68pKbqi9SytKFeql25AI++R0E/6VINy5jZSjN71cy6zOyeEm0+YmY/N7N9ZvZ3ld3M6WfXrl00NzfT1NTExo0bE9s8+eSTAEtUkxG1VpNpq9wQSvhadBltPaO1jb22a9cumhcvpul972PjffclvuXJJ5+kljKl4ty97ALMBA4AjQRzPrwALIm1uQzYD1yZf/yPRlvv8uXLvVoNDQ15Y2OjHzhwwM+dO+fLli3zffv2FbQ5ceKEL1682IEXXTVx9/HVxKu8LmkBHZ6iFheW4WEf13LuXPJy5kzxcurU2JakdSR81tDAQLCvdHb6ubNng33lpZcKtvPEsWPhvlITmTIWafeVND33m4Aud3/d3QeA7QRzVkTdSjDfwxv5Xxi/HtdvmiqxZ88empqaaGxspL6+nra2Ntrb2wvabN26lXXr1kHw1WWqCbVXk2knqVcd723He+BJPfO0S9L6gT3PPENTY+PIvvKJT9C+Y0dBm63btrHu4x+nVjJlIqQJ94XAocjjnvxzUe8DLjezJ81sr5ndlrQiM7vTzDrMrOPIkSPj2+JpoLe3l0WLFl14nMvl6O3tLWjz2muvceLECYBm1SSQtiaQnbpMC0nDJWkCvL+/csEeud97+HCwr+Qf5xYuLLmv1EqmTIQ0RzmSzjONn2NbBywHfptgZrlnzOxZL/zaLtx9C8GX9tLS0lK1X4/lCd/sZVZYpqGhIfbu3QvQCaxANUldk/z6MlGXKZcU6vH78dty90upqys8S2ZoqPggav55T1h34r7y/PMA/4oayJSJkCbce4BFkcc54HBCm6MezAt9xsyeIpjsv+g/bRbkcjkOHRr5Y6anp4cFCxYUtbniiiv42c9+dt7dj6omtVeTKTWeUI/3tJPWEz6XFNzhbdLrEbmFCzn0xhsXHvccOlRyX3n22WdrIlMmQpphmeeAa83sGjOrB9oIvhk9qh34rfyXAswl+HLe+Pc0ZkZrayudnZ10d3czMDDA9u3bWbNmTUGbtWvX8vTTwRezqyaBWqvJlCkV7OWGXvr7i5fTp0duo0v8uWjb+JIwXNN6ww10HjhAd1dXsK98+9usWb26YJPXrlnD0z/5CbWSKRNh1J67uw+Z2d0E3+AyE3jI3feZ2Yb865vd/RUz20Xw1V7ngb9x95cncsOnUl1dHZs2bWLFihUMDw+zfv16li5dyubNmwHYsGEDixcvZuXKlTzxxBNLgT2oJjVXkylRLtjD27QHTaOvJa0/2lsPb8stF95Wx6a//EtWrF0b7Cu3387SJUvY/OCDMGPGyL6yYgVPPPFETWTKRLCksdLJ0NLS4h0dHVPy2ZPJzPa6e6pvEVBNktVCXcZak8S5ZUbrsUfvpz14OjgYvG94uHCdYVjPnBnczppVGOQNDcn342Efv43fH8PcMrWwn0D6fUWXjYlkwViGYkoNyyQF/eBgEOylDqrW1QUBH4b77NnB/XDcvaFhpF30cfhc2C46Tj/KmL2kowqKVLuxBnt8nH1oCM6ehXPnCp+PBnu4zrAnP2tWcBvvnc+eDXPmBO3mzBnZjoaGYOnvV8BPElVPpBqV6kmP9eBpGOqlbpPG4UPxYA8DfN68IOTPnQvuR8O8VMCX+lnq68dfoxqncBfJirEEe3h2S19fEMLlznopF+5hoEeX/n645JKRXv8llxS+r6Eh+ZdTitMoJT1VUSQLRgv2pNMcT58Owv3MmfKnNp49GwR1OCQDwbDMzJnB0Eu0xz5v3sj7hoeDx6VEx+PDbVfAV4wqKFLtSl1wVCrkT5+GkydHwv3UqcLnosEfDeqkcG9ogEsvDXrnl14ahPlll5W/CCoM8GiYh89LxaiaItUsbaAnBfvJk8XLiRPB7Zkz0NfH+f5+zgNDBCebh2YQhEcdBKF+2WVBwIfBHh3GiZ7+GD1lMt4m3H713itC1ROpRqXOkAnvl+qxh8vJk3D06MjtiRNw7NiFkB8YHGSAYPrOIQrDfQYj4V4P1Pf10dDXFwR72MuPhvbMmSNLOE7f3198pkzYPvpz6IDquCncRbIi6WKlaLCfPRsMtUR76kePwptvBsF+5AgD/f30A2/BqOFeH1nmAnNPnqQuvNgJinvsc+YEt9Fgjw7PRH8O9dovmiooUu3SXoF65szIwdOjR0eC/Ve/gmPHeGtwkLfgwtJP6XAPh2Qa8kvYZl5fH/UQhHj0DJp584LPnT07GLtP2saQgr0iVEWRahYfjglvS423R8fajx4NeuzHjnF6cJDTwGmKwz0M+FB0SCZ8raBX39dHXfwMmtOng9tz54JlzpzS5+qHP4NC/qKoeiJZUu5UyLNni8fdjxy50GM/HVnCcA8D/jwjAR7ttZfq0c87eTI4wBo/pXLevNJ/XSjMK0rVFKlW8dMNkw6qDg4GS3//yMVKp09fOCtmKDLGHg348HFSzz3stScFezgGf35wkBnxC6HC0ynDRSaUwl0kC+JDMuH94eHiOWPC8fe+PgagINzjSz8j4+kwcjA1DPYw1OMHX4eA+nB+mmjvPHrANbrd4f2kM2hkXBTuItVotOBL6tUnjMWHoRxd+ikckgmHZWAkzMOAjx5sPR+7D5SfUVLhPaEU7iJZFQ30sAcdmfExGs6jLdFwhyA4ohc1yfST5mv2RKQalLvkP96DHh6+0MMOQzp+P3obmjGG5cIUBaUOlMa+oangebloqqJIjSoIYpIDOgyI+Jky4cHTujLPXZh7JjotcPjFHuF88FEK9YpSNUWqUdIBx3JzsoQ96Mh0APEQj4d0fCiGyOsNJZbwbJkZ4YRi4ayRYcDHv44v3O5SP6OMm6onklWlJuzKXz06Y9Ys6gYHC6YRiJ67HoZ+/EyZsF0D+WkH8ks05C/MFBleyBTvwacNeBk3VVSkWpU7XTDpC6mjV43mw7fh5MmC0xjDcfcZFJ8pA4Xnss+NLfPyt3XhLJHhbUNDEPSzZwf3o+PwpQJeYX/RVEGRahefLjcajOFsjGGwhkt+/vX6M2doyJ85Ex2GiU4tEO25x4dl4sHeMGsWvPOdQahfdtnI9ANz5gRLXd3IbVKwK9QrRpUUyYr41LnR2RjPnSuc6yXsVff3M/fIkQuriF5pWm7CsKShmYaGBpg/P1iuuCJYwnnew8+dPXv0IRkFfEWoiiLVLD40Ex+GCc9tD3vu4TclhVMCEIT2vCNHLvTY4xcvlQr3MODnAjPCnno82MPPC8ff4wdYk8bfpSJUTZFqlBTqUDg0Ew/5cNKu/v4gfKNmzmTuyZPU9/fTQPEYPBSfVdNA/qyYMNTDgA+DPVyiZ81El6RA17h7xah6ItWq3DcZxYN9cLBwRkYofE/+1MW6vj7qzpxhbl9f4lfrzQBmzJo18p2p4W00zKM99ui4e/SsmVJL9GeTi6IKimRFqd57GPDDw0EYR2dkjJ9FE/li7LpyX4odLtEvxQ4DPByGCV8LQz3eaw8/X2PuE0JVFKlmo/Xew2BvaCh8X3iFaDTco3Ovh2Py8XCPjpWHoR0N8PB+GO7RXxzlxth1tkzFqZIi1a7Ulanh43iwR19vaAgOtoa99jDUIwdcC9YdDffoaZVz5gTrCQM9fC7eWy81LBPdXqkIVVMka+JhmRTuM2cGp0eGgdvfHwR8GOrxsfn4MMrs2cXfk5q0RH8JlBtnV7BXnCoqUo2i4+vh41LDMzAS8ElTEoRfqhF+qcfgYOl52OvqRib/Cq82DS9KSgrzNAdQNeY+IVRFkWoWD/Ny30Uajr+HbaO99jDQw/tQ/K1JM2cGt9F5aqJBH11n/IBuvOevYJ9wqqRItUsT8OHz/f0jIR/v7UcPvMYDPgx2KJ7ZMe0SboeCfVKomiJZU64HHwZ7dImGO5T+0o94KJcK7jSBrmCfcKqoSBZEe+/Rx0mhGQ3z0UI9afy+VMgn3S93G1+fVFSqr9kzs5Vm9qqZdZnZPWXatZrZsJn9buU2cXratWsXzc3NNDU1sXHjxnJN56omRWqmJpOqVGiW6lmXOsMletFR/CKkpAuSxnHwdNfu3TS///00LVnCxvvuK/kj1VKmVNqovzLNbCbwAPBRoAd4zsx2uPv+hHb3AbsnYkOnk+HhYe666y5+/OMfk8vlaG1tZc2aNSxZsqSoHZBDNSloR43UZEqUO4sm7Xvi95Palro/2uvk95XPf54f794d7Csf+ABrPvaxUvtKTWTKREjTc78J6HL31919ANgOrE1o94fA3wK/ruD2TUt79uyhqamJxsZG6uvraWtro729vajdV7/6VYATqCYX1FJNplQ8WMv13kvdL9VDL/e+Up8Xsef552l673tH9pVPfIL2HTuKfoSvbtoENZIpEyFNuC8EDkUe9+Sfu8DMFgIfBzaXW5GZ3WlmHWbWcSQyh3S16e3tZdGiRRce53I5ent7i9p873vfAyj7g6omybJSlymVNExTLoDTDK0ktYmvI77+2OcX7SsLFybvK489BjWSKRMhTbhbwnMee/xXwBfcfTih7cib3Le4e4u7t8yfPz/lJk4/7vEfH8wKy/T5z3+e+8qMJUbWpZokry8TdZlyZUK24P7FLvF1ldmGVPvKH/0R933lK9RKpkyENIepe4BFkcc54HCsTQuwPf8PdAWw2syG3P2xSmzkdJPL5Th0aOSPmZ6eHhYsWFDQpqOjg7a2NoD3A9ehmtRcTaaV+Nk04XOhpLnh0653jK8X7Su9vcX7yt69tN16KwcPHvwlNZApEyHNv+JzwLVmdg3QC7QBt0YbuPs14X0zexj4QZb/EVpbW+ns7KS7u5uFCxeyfft2tm7dWtCmu7sbADN7CXgZ1aTmajLtJB04jb9W6c9K0NraSmdX18i+8q1vsfWb3yxo033gQHBnxoyrayFTJsKo/6LuPmRmdxMcsZ4JPOTu+8xsQ/71smNiWVRXV8emTZtYsWIFw8PDrF+/nqVLl7J5c1CKDRs2TPEWTj7VpIqU6rFXet0lm9Sx6f77WbFqVbCv3HGH9pUJYEnjX5OhpaXFOzo6puSzJ5OZ7XX3ljRtVZNktVCXsdaE8+cr+x/3YkN+oi5EmjEj6ZhfolrYTyD9vpLqIiYRybikA6Fjea9MO/pXEalGY+jRjkl9/YSsViafeu4iIhmkcBcRySCFu4hIBincRUQySOEuIpJBCncRkQxSuIuIZJDCXUQkgxTuIiIZpHAXEckghbuISAYp3EVEMkjhLiKSQQp3EZEMUriLiGSQwl1EJIMU7iIiGaRwFxHJIIW7iEgGKdxFRDJI4S4ikkEKdxGRDFK4i4hkkMJdRCSDFO4iIhmkcBcRySCFu4hIBincRUQySOEuIpJBCncRkQxSuIuIZJDCXUQkg1KFu5mtNLNXzazLzO5JeP2TZvZifvl7M7uh8ps6vezatYvm5maamprYuHFj0euPPvooy5YtA1iimgRqsSaSTJkyCdy97ALMBA4AjUA98AKwJNbmZuDy/P1VwM9GW+/y5cu9Wg0NDXljY6MfOHDAz50758uWLfN9+/YVtPnpT3/qx48fd6BDNQmMpyZe5XVJC+jwFLXIwqJMuThp95U0PfebgC53f93dB4DtwNrYL4i/d/cT+YfPArmx/IKpNnv27KGpqYnGxkbq6+tpa2ujvb29oM3NN9/M5ZdfHj5UTai9mkhJypRJkCbcFwKHIo978s+V8hlgZ9ILZnanmXWYWceRI0fSb+U009vby6JFiy48zuVy9Pb2lnuLalKsZE0gO3WRRMqUSZAm3C3hOU9saPbPCP4hvpD0urtvcfcWd2+ZP39++q2cZoK/jAqZJZUJgEtRTeLK1iS/vkzURRIpUyZBXYo2PcCiyOMccDjeyMyWAX8DrHL3Y5XZvOkpl8tx6NBIx6Onp4cFCxYUtXvxxRcBrgKWqSaBWqqJlKRMmQRpeu7PAdea2TVmVg+0ATuiDczsSuC7wKfc/bXKb+b00traSmdnJ93d3QwMDLB9+3bWrFlT0OaNN95g3bp1AN2qSaDWaiIlKVMmwag9d3cfMrO7gd0ER7kfcvd9ZrYh//pm4E+AdwIP5v8UH3L3lonb7KlVV1fHpk2bWLFiBcPDw6xfv56lS5eyefNmADZs2MCXv/xljh07BnCVmf0c1aTmaiLJlCmTw5LGSidDS0uLd3R0TMlnTyYz25t2p1RNktVCXcZaEylWC/sJpN9XdIWqiEgGKdxFRDJI4S4ikkEKdxGRDFK4i4hkkMJdRCSDFO4iIhmkcBcRySCFu4hIBincRUQySOEuIpJBCncRkQxSuIuIZJDCXUQkgxTuIiIZpHAXEckghbuISAYp3EVEMkjhLiKSQQp3EZEMUriLiGSQwl1EJIMU7iIiGaRwFxHJIIW7iEgGKdxFRDJI4S4ikkEKdxGRDFK4i4hkkMJdRCSDFO4iIhmkcBcRySCFu4hIBincRUQySOEuIpJBqcLdzFaa2atm1mVm9yS8bmZ2f/71F83sNyq/qdPLrl27aG5upqmpiY0bNxa97u587nOfA7heNQnUYk0kmTJl4o0a7mY2E3gAWAUsAW4xsyWxZquAa/PLncBfV3g7p5Xh4WHuuusudu7cyf79+9m2bRv79+8vaLNz5046OzsBXkY1AWqvJpJMmTI50vTcbwK63P11dx8AtgNrY23WAo944FngMjN7T4W3ddrYs2cPTU1NNDY2Ul9fT1tbG+3t7QVt2tvbue222wBQTQK1VhMpSZkyCepStFkIHIo87gE+kKLNQuDNaCMzu5PgtzDAOTN7eUxbO31cDrzNzA7mH78DmPfFL37xjUibpi1btvwKaM4/Vk1S1gQyVZe0mkdvkhnKlIuTal9JE+6W8JyPow3uvgXYAmBmHe7ekuLzpx0z+z1ghbv/Qf7xp4Cb3P0PI21+CHwF+KvIW1WTFDWB7NQlLTPrmOptmETKlIuQdl9JMyzTAyyKPM4Bh8fRJktUk2KqiaSlfWUSpAn354BrzewaM6sH2oAdsTY7gNvyR7g/CJxy96I/tTMkdU0AVJMLaq0mkkyZMglGHZZx9yEzuxvYDcwEHnL3fWa2If/6ZuBHwGqgC3gLuCPFZ28Z91ZPsTHWZDnwNVST8dYEqrguY1ALPyOgTKmAVD+nuScOeYqISBXTFaoiIhmkcBcRyaApCffRLj3OAjN7yMx+nfa8W9Uksb1qIqloXyk26eGe8tLjLHgYWJmmoWpSTDWRtLSvJJuKnnuaS4+rnrs/BRxP2Vw1KaaaSFraVxJMRbiXuqy4lqkmxVQTSUv7SoKpCPdUlxXXGNWkmGoiaWlfSTAV4a7LioupJsVUE0lL+0qCqQj3NJce1xrVpJhqImlpX0kw6eHu7kNAeOnxK8C33X3fZG/HRDOzbcAzQLOZ9ZjZZ0q1VU2KqSaSlvaVEu01/YCISPboClURkQxSuIuIZJDCXUQkgxTuIiIZpHAXEckghbuISAYp3EVEMuj/A9JxRq19O2l2AAAAAElFTkSuQmCC\n", | ||
"text/plain": [ | ||
"<Figure size 432x288 with 5 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"display(orbitals, extrapolation_planes, heights, spin, kind, out)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "77239ed6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.