This tutorial covers connecting AlpacaforR
to the Alpaca
API and navigating the package. The Alpaca API
Docs provide a
more general overview of the authentication, API limits, an explanation
of paper & live trading, and release notes. It’s worth checking out. If
you have never heard of Alpaca, you can learn more
here! If you want to reference
this material later from within R, you can do so with
vignette("AlpacaforR", "Getting Started")
market_data
now uses the Alpaca version 2 data API with automatic pagination support. Retrieving full data sets for 1 minute, 1 hour, and 1 day periods should be very quick.- The new Alpaca data websockets are supported by
AlpacaStreams
. Polygon websocket support is retained, but will no longer be developed. - Trailing stop loss orders of all types are supported.
- This release includes an overhaul of the entire package that is
not backwards compatible in some instances, that emphasizes the
following:
- Creates an experience of the package functionality that mirrors that of the Alpaca API documentation and provides for more intuitive navigation of the package for new users.
- Extensive package documentation that links directly to the appropriate online documentation wherever necessary with attention paid to consistency between the two. Documentation inheritance, families, aliases and see also have been implemented.
- Robust error pre-empting and catching such that meaningful info is provided when the function encounters a user error.
- Better intention detection based on the combinations of arguments entered rather than having to remember multiple functions or specify each parameter explicitly. Smoother fuzzy detection and autocomplete from RStudio with new consistent function names.
- Add support for Alpaca Websockets
AlpacaforR
is available on CRAN and can be installed with
install.packages("AlpacaforR")
. The development version of the package
can be installed from Github.
To install the development version, devtools is required:
if (!require("devtools")) install.packages("devtools")
The AlpacaforR
🦙𝘙 dev version can be installed using
devtools::install_github
with:
if (!require("AlpacaforR")) {
devtools::install_github("yogat3ch/AlpacaforR")
}
library(AlpacaforR)
Connecting to the Alpaca API requires a KEY-ID 🔑 and SECRET-KEY 🗝 as specifically named environment variables for both live and paper accounts. These values can be found on the respective Alpaca dashboards. Hit “Regenerate Key” if the secret key is no longer visible. Note that this will reset your key.
Alpaca provides all users with a paper account. Users in the United
States have the option of creating a live account after verifying their
financial info. In order to simplify working on a particular account for
an extended period of time, AlpacaforR
(as of 2020-11-09) supports the
usage of an option in the R session.
To set the current session to only use the live account, simply run:
Sys.setenv("APCA-LIVE" = TRUE)
The default value will be FALSE
if no option is set. All functions
will use the paper account when live = FALSE
. Read on to learn how
to set this option permanently.
The simplest way to set these values for this and future R sessions is
to use AlpacaforR::firstrun
to add these to the .Renviron
file. If
the .Renviron
file does not exist it will be created in the R root
folder (found by running path.expand("~")
).
firstrun
has arguments: paper_api
, live_api
, polygon_api
, pro
and live
. paper_api
and live_api
are named vectors with key &
secret for paper and live accounts respectively, while polygon_api
is
the secret key for a Polygon account. The pro
argument specifies
whether an Alpaca Pro subscription is available and live
argument is a
logical which sets the default value for live
in future sessions. See
Live or Paper and for details.
firstrun(
paper_api = c(key = "paper-key", secret = "paper-secret"),
live_api = c(key = "live-key", secret = "live-secret"),
polygon_api = "polygon-key",
pro = FALSE,
live = FALSE
)
If using RStudio, these parameters can be added to the .Renviron
file
another way by typing usethis::edit_r_environ()
at the console. The
keys are added as name = key
pairs like so:
APCA-PAPER-KEY = 'PAPER-KEY'
APCA-PAPER-SECRET = 'PAPER-SECRET'
APCA-LIVE-KEY = 'LIVE-KEY'
APCA-LIVE-SECRET = 'LIVE-SECRET'
POLYGON-KEY = 'POLYGON-KEY'
APCA-LIVE = 'FALSE'
APCA-PRO = 'FALSE'
The following guide details how to set environment variables permanently if you prefer to do this manually via your file system with a text editor.
Test that these have been properly set by calling:
Sys.getenv('APCA-PAPER-KEY')
Sys.getenv('APCA-PAPER-SECRET')
Sys.getenv('APCA-LIVE-KEY')
Sys.getenv('APCA-LIVE-SECRET')
Sys.getenv('POLYGON-KEY')
Sys.getenv('APCA-LIVE')
Sys.getenv('APCA-PRO')
The output should be the key/secret values entered. The keys can also be
set manually for the session using Sys.setenv
:
Sys.setenv('APCA-PAPER-KEY' = "PAPER-KEY")
...
Once these environmental variables are set, all AlpacaforR
🦙 functions
will work correctly.
🛑 User keys & secrets MUST be set as the appropriately named environment variables above for all demos hereforward to work!
Account
Plans
documents the key differences between the account types. When using
AlpacaforR
, interaction with the live or paper account is indicated by
setting the live = TRUE/FALSE
argument. The default is the value of
the APCA-LIVE
environment variable. E.g:
#For a paper account; live = FALSE is the default.
# subset is unnecessary, it is added so as not to expose the developers account details
account()[-c(1:2)]
#> $status
#> [1] "ACTIVE"
#>
#> $currency
#> [1] "USD"
#>
#> $buying_power
#> [1] 387837.5
#>
#> $regt_buying_power
#> [1] 193871
#>
#> $daytrading_buying_power
#> [1] 387837.5
#>
#> $cash
#> [1] 96935.5
#>
#> $portfolio_value
#> [1] 96935.5
#>
#> $pattern_day_trader
#> [1] FALSE
#>
#> $trading_blocked
#> [1] FALSE
#>
#> $transfers_blocked
#> [1] FALSE
#>
#> $account_blocked
#> [1] FALSE
#>
#> $created_at
#> [1] "2019-06-26 20:31:20 EDT"
#>
#> $trade_suspended_by_user
#> [1] FALSE
#>
#> $multiplier
#> [1] 4
#>
#> $shorting_enabled
#> [1] TRUE
#>
#> $equity
#> [1] 96935.5
#>
#> $last_equity
#> [1] 96959.38
#>
#> $long_market_value
#> [1] 0
#>
#> $short_market_value
#> [1] 0
#>
#> $initial_margin
#> [1] 0
#>
#> $maintenance_margin
#> [1] 0
#>
#> $last_maintenance_margin
#> [1] 0
#>
#> $sma
#> [1] 0
#>
#> $daytrade_count
#> [1] 22
For live account details set live = TRUE
account(live = TRUE) [-c(1:2)]
Not all functions require this since some functions use the same URL
regardless of the account type. These functions are assets
💰,
calendar
🗓, clock
⏰, and market_data
📊 where the same URLs are
used for both account types.
The functionality in the AlpacaforR
package maps neatly onto the
endpoints listed in the API version 2
Documentation
for ease of reference. For any function hereforward, you can use
?function_name
at the console to view the function’s documentation
which will provide a great deal more depth of detail regarding it’s
arguments and what the function returns.
Accessing account information is made easy through the account
function which will return account details such as account id 🆔,
portfolio value 💲 , buying power 🔌, cash 💵, cash withdrawable 💸, etc.
See ?account
for more details or visit the Account Endpoint
Docs to
learn everything there is to know about the requests and responses for
this endpoint.
account(live = TRUE)
The Account Configuration Endpoint supports viewing and setting account configuration details.
Retrieve the account configuration
account_config()
## $dtbp_check
## [1] "entry"
##
## $fractional_trading
## [1] TRUE
##
## $max_margin_multiplier
## [1] "4"
##
## $no_shorting
## [1] FALSE
##
## $pdt_check
## [1] "entry"
##
## $suspend_trade
## [1] FALSE
##
## $trade_confirm_email
## [1] "all"
##
## attr(,"query")
## attr(,"query")$status_code
## [1] 200
##
## attr(,"query")$url
## [1] "https://paper-api.alpaca.markets/v2/account/configurations"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:08:00 EDT"
Change configuration settings as needed.
# change a configuration: block all orders on the live account
account_config(suspend_trade = T)
## $dtbp_check
## [1] "entry"
##
## $fractional_trading
## [1] TRUE
##
## $max_margin_multiplier
## [1] "4"
##
## $no_shorting
## [1] FALSE
##
## $pdt_check
## [1] "entry"
##
## $suspend_trade
## [1] TRUE
##
## $trade_confirm_email
## [1] "all"
##
## attr(,"query")
## attr(,"query")$status_code
## [1] 200
##
## attr(,"query")$url
## [1] "https://paper-api.alpaca.markets/v2/account/configurations"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:08:01 EDT"
Return all settings back to defaults with ease.
account_config("default")
## $dtbp_check
## [1] "entry"
##
## $fractional_trading
## [1] TRUE
##
## $max_margin_multiplier
## [1] "4"
##
## $no_shorting
## [1] FALSE
##
## $pdt_check
## [1] "entry"
##
## $suspend_trade
## [1] FALSE
##
## $trade_confirm_email
## [1] "all"
##
## attr(,"query")
## attr(,"query")$status_code
## [1] 200
##
## attr(,"query")$url
## [1] "https://paper-api.alpaca.markets/v2/account/configurations"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:08:01 EDT"
The Account Activities
Endpoint
returns all account activities, optionally filtered by type and date
range. This endpoint supports paging - advance pages by providing the
last ID supplied for a given page to page_token
.
# retrieve page 1 of account activities
(aa <- account_activities())
#> # A tibble: 50 x 11
#> id activity_type transaction_time type price qty side symbol
#> <chr> <chr> <dttm> <chr> <dbl> <dbl> <chr> <chr>
#> 1 2020~ FILL 2020-05-29 11:33:38 fill 2411. 1 sell AMZN
#> 2 2020~ FILL 2020-05-29 11:33:37 fill 124. 1 buy BYND
#> 3 2020~ FILL 2020-05-29 11:33:37 fill 2412. 1 buy AMZN
#> 4 2020~ FILL 2020-05-29 11:33:36 fill 2411. 6 sell AMZN
#> 5 2020~ FILL 2020-05-29 11:33:36 fill 124. 2 sell BYND
#> 6 2020~ FILL 2020-05-29 11:33:03 fill 124. 2 buy BYND
#> 7 2020~ FILL 2020-05-29 11:33:02 fill 2411. 2 buy AMZN
#> 8 2020~ FILL 2020-05-29 11:33:01 fill 2411. 2 buy AMZN
#> 9 2020~ FILL 2020-05-29 11:32:58 fill 2411. 2 buy AMZN
#> 10 2020~ FILL 2020-05-29 11:29:54 fill 2411. 2 sell AMZN
#> # ... with 40 more rows, and 3 more variables: leaves_qty <dbl>,
#> # order_id <chr>, cum_qty <dbl>
# retrieve page 2
account_activities(page_token = aa$id[50])
#> # A tibble: 50 x 11
#> id activity_type transaction_time type price qty side symbol
#> <chr> <chr> <dttm> <chr> <dbl> <dbl> <chr> <chr>
#> 1 2020~ FILL 2020-05-26 15:33:53 fill 133. 2 sell BYND
#> 2 2020~ FILL 2020-05-26 15:33:49 fill 133. 2 buy BYND
#> 3 2020~ FILL 2020-05-26 15:32:32 fill 133. 2 sell BYND
#> 4 2020~ FILL 2020-05-26 15:32:26 fill 133. 2 buy BYND
#> 5 2020~ FILL 2020-05-26 15:28:09 fill 133. 2 sell BYND
#> 6 2020~ FILL 2020-05-26 15:28:04 fill 133. 2 buy BYND
#> 7 2020~ FILL 2020-05-26 15:23:10 fill 133. 10 sell BYND
#> 8 2020~ FILL 2020-05-26 15:23:05 fill 133. 1 buy BYND
#> 9 2020~ FILL 2020-05-26 15:23:05 part~ 133. 1 buy BYND
#> 10 2020~ FILL 2020-05-26 15:22:09 fill 133. 2 buy BYND
#> # ... with 40 more rows, and 3 more variables: leaves_qty <dbl>,
#> # order_id <chr>, cum_qty <dbl>
Optionally provide a filter. See for a list of account activity types.
account_activities("fill")
#> # A tibble: 50 x 11
#> id activity_type transaction_time type price qty side symbol
#> <chr> <chr> <dttm> <chr> <dbl> <dbl> <chr> <chr>
#> 1 2020~ FILL 2020-05-29 11:33:38 fill 2411. 1 sell AMZN
#> 2 2020~ FILL 2020-05-29 11:33:37 fill 124. 1 buy BYND
#> 3 2020~ FILL 2020-05-29 11:33:37 fill 2412. 1 buy AMZN
#> 4 2020~ FILL 2020-05-29 11:33:36 fill 2411. 6 sell AMZN
#> 5 2020~ FILL 2020-05-29 11:33:36 fill 124. 2 sell BYND
#> 6 2020~ FILL 2020-05-29 11:33:03 fill 124. 2 buy BYND
#> 7 2020~ FILL 2020-05-29 11:33:02 fill 2411. 2 buy AMZN
#> 8 2020~ FILL 2020-05-29 11:33:01 fill 2411. 2 buy AMZN
#> 9 2020~ FILL 2020-05-29 11:32:58 fill 2411. 2 buy AMZN
#> 10 2020~ FILL 2020-05-29 11:29:54 fill 2411. 2 sell AMZN
#> # ... with 40 more rows, and 3 more variables: leaves_qty <dbl>,
#> # order_id <chr>, cum_qty <dbl>
The Portfolio History
Endpoint
returns a timeseries with equity and profit/loss summary for a period of
time aggregated by the specified timeframe
(optional) or up to a
specific end date date_end
(optional).
To take a look at equity & gain/loss for the paper account over the past two weeks:
account_portfolio("2w")
#> multiplier can be 5 or 15 when `timeframe` is minutes and period or `date_end` to the present is > 7 days & < 30 days. Multiplier set to 5.
#> Timeframe set to 5 Minutes
#> # A tibble: 711 x 4
#> timestamp equity profit_loss profit_loss_pct
#> <dttm> <dbl> <dbl> <dbl>
#> 1 2020-05-18 09:30:00 96751. -2.1 -0.0000217
#> 2 2020-05-18 09:35:00 96712. -40.9 -0.000423
#> 3 2020-05-18 09:40:00 96719. -33.7 -0.000348
#> 4 2020-05-18 09:45:00 96718. -34.4 -0.000355
#> 5 2020-05-18 09:50:00 96706. -46.7 -0.000482
#> 6 2020-05-18 09:55:00 96685. -67.8 -0.000700
#> 7 2020-05-18 10:00:00 96706. -47.1 -0.000487
#> 8 2020-05-18 10:05:00 96716. -36.9 -0.000381
#> 9 2020-05-18 10:10:00 96723. -29.5 -0.000305
#> 10 2020-05-18 10:15:00 96720. -32.8 -0.000339
#> # ... with 701 more rows
When AlpacaforR
function arguments are omitted, they will be assumed
with informative messages indicating what values were used for omitted
arguments. In the case above, the most granular timeframe
allowed for
the period is assumed.
To view the same data with a timeframe
of hours instead, use the
following:
account_portfolio("2w", "1h")
#> # A tibble: 64 x 4
#> timestamp equity profit_loss profit_loss_pct
#> <dttm> <dbl> <dbl> <dbl>
#> 1 2020-05-18 09:30:00 96751. -2.1 -0.0000217
#> 2 2020-05-18 10:30:00 96737. -15.9 -0.000165
#> 3 2020-05-18 11:30:00 96767. 14.2 0.000147
#> 4 2020-05-18 12:30:00 96766. 13.4 0.000138
#> 5 2020-05-18 13:30:00 96769. 16.0 0.000166
#> 6 2020-05-18 14:30:00 96767. 14.4 0.000149
#> 7 2020-05-18 15:30:00 96744. -8.4 -0.0000868
#> 8 2020-05-19 09:30:00 96772. 18.8 0.000194
#> 9 2020-05-19 10:30:00 96806. 53.6 0.000554
#> 10 2020-05-19 11:30:00 96899. 146. 0.00151
#> # ... with 54 more rows
The Assets Endpoint serves as a queryable master list of assets 💰 available for trade and data consumption from Alpaca. Assets are sorted by asset class, exchange and symbol. Calling the function without arguments retrieves all assets. Be forewarned; this takes a while.
## NOT RUN
assets()
Assets can be retrieved by providing:
- the asset symbol
(amzn <- assets("AMZN"))
## # A tibble: 1 x 11
## id class exchange symbol name status tradable marginable shortable
## <chr> <chr> <chr> <chr> <chr> <chr> <lgl> <lgl> <lgl>
## 1 f801f835-~ us_e~ NASDAQ AMZN Amazon.~ active TRUE TRUE TRUE
## # ... with 2 more variables: easy_to_borrow <lgl>, fractionable <lgl>
- a vector of asset symbols (not case-sensitive)
assets(c("AMZN", "fb"))
## # A tibble: 2 x 11
## id class exchange symbol name status tradable marginable shortable
## <chr> <chr> <chr> <chr> <chr> <chr> <lgl> <lgl> <lgl>
## 1 f801f835~ us_eq~ NASDAQ AMZN Amazon.~ active TRUE TRUE TRUE
## 2 fc6a5dcd~ us_eq~ NASDAQ FB Faceboo~ active TRUE TRUE TRUE
## # ... with 2 more variables: easy_to_borrow <lgl>, fractionable <lgl>
- the asset id
assets(amzn$id)
## # A tibble: 1 x 11
## id class exchange symbol name status tradable marginable shortable
## <chr> <chr> <chr> <chr> <chr> <chr> <lgl> <lgl> <lgl>
## 1 f801f835-~ us_e~ NASDAQ AMZN Amazon.~ active TRUE TRUE TRUE
## # ... with 2 more variables: easy_to_borrow <lgl>, fractionable <lgl>
The Calendar
Endpoint
serves the full list of market days from 1970 to 2029, bounded by
optional from
and/or to
dates. In addition to the market dates, the
response also contains the specific open and close times for the market
days, taking into account early closures. The calendar
function as of
AlpacaforR 0.3.0
will return
intervals
spanning the market day
and session
for easily subsetting Date type
vectors, as well as the three letter abbreviation for the day of the
week the date represents. Visit the Calendar
Endpoint
to learn everything there is to know about the requests and responses
for this endpoint.
#Get today's hours
calendar()
#> `from`, `to` arg(s) is/are NULL, setting from/to to 2020-05-29
#> date open close session_open session_close
#> 1 2020-05-29 09:30 16:00 07:00 19:00
#> day
#> 1 2020-05-29 09:30:00 EDT--2020-05-29 16:00:00 EDT
#> session dow
#> 1 2020-05-29 07:00:00 EDT--2020-05-29 19:00:00 EDT Fri
#Get the schedule for the next week
calendar(to = lubridate::today() + lubridate::weeks(1))
#> `from` arg(s) is/are NULL, setting from/to to 2020-05-29
#> date open close session_open session_close
#> 1 2020-05-29 09:30 16:00 07:00 19:00
#> 2 2020-06-01 09:30 16:00 07:00 19:00
#> 3 2020-06-02 09:30 16:00 07:00 19:00
#> 4 2020-06-03 09:30 16:00 07:00 19:00
#> 5 2020-06-04 09:30 16:00 07:00 19:00
#> 6 2020-06-05 09:30 16:00 07:00 19:00
#> day
#> 1 2020-05-29 09:30:00 EDT--2020-05-29 16:00:00 EDT
#> 2 2020-06-01 09:30:00 EDT--2020-06-01 16:00:00 EDT
#> 3 2020-06-02 09:30:00 EDT--2020-06-02 16:00:00 EDT
#> 4 2020-06-03 09:30:00 EDT--2020-06-03 16:00:00 EDT
#> 5 2020-06-04 09:30:00 EDT--2020-06-04 16:00:00 EDT
#> 6 2020-06-05 09:30:00 EDT--2020-06-05 16:00:00 EDT
#> session dow
#> 1 2020-05-29 07:00:00 EDT--2020-05-29 19:00:00 EDT Fri
#> 2 2020-06-01 07:00:00 EDT--2020-06-01 19:00:00 EDT Mon
#> 3 2020-06-02 07:00:00 EDT--2020-06-02 19:00:00 EDT Tue
#> 4 2020-06-03 07:00:00 EDT--2020-06-03 19:00:00 EDT Wed
#> 5 2020-06-04 07:00:00 EDT--2020-06-04 19:00:00 EDT Thu
#> 6 2020-06-05 07:00:00 EDT--2020-06-05 19:00:00 EDT Fri
Subsetting market data using the intervals returned from this function will be covered in the Market Data section.
All Dates/Datetimes input as arguments are forced (See
lubridate::force_tz
)
to America/New York timezone in which the NYSE operates for
market_data
and calendar
functions. This means that if
lubridate::now
is used to specify 3PM in the local timezone, it will be forced to 3PM
in the "America/New_York"
timezone. This eliminates the need to
consistently account for timezone conversions when providing inputs to
retrieve historical data using market_data
.
The clock
function accesses the Clock
endpoint,
used to gain an understanding of how the local time compares to
“America/New_York.” A timezone can be specified to the tz
argument to
determine how the market hours compare to the specified timezone hours.
If no tz
argument is provided, and the local timezone differs from
“America/New_York”, clock
will automatically provide the local
conversion and offset.
clock()
#> $timestamp
#> [1] "2020-05-29 14:48:46 EDT"
#>
#> $is_open
#> [1] TRUE
#>
#> $next_open
#> [1] "2020-06-01 09:30:00 EDT"
#>
#> $next_close
#> [1] "2020-05-29 16:00:00 EDT"
clock(tz = "America/Los_Angeles")
#> $timestamp
#> $timestamp$market
#> [1] "2020-05-29 14:48:46 EDT"
#>
#> $timestamp$local
#> [1] "2020-05-29 11:48:46 PDT"
#>
#> $timestamp$offset
#> [1] "3H 0M 0S"
#>
#>
#> $is_open
#> [1] TRUE
#>
#> $next_open
#> $next_open$market
#> [1] "2020-06-01 09:30:00 EDT"
#>
#> $next_open$local
#> [1] "2020-06-01 06:30:00 PDT"
#>
#> $next_open$offset
#> [1] "3H 0M 0S"
#>
#>
#> $next_close
#> $next_close$market
#> [1] "2020-05-29 16:00:00 EDT"
#>
#> $next_close$local
#> [1] "2020-05-29 13:00:00 PDT"
#>
#> $next_close$offset
#> [1] "3H 0M 0S"
The watchlist
function accesses all Watchlist
Endpoints.
An account can have multiple watchlists and each is uniquely identified
by id but can also be addressed by a user-defined name. Each watchlist
is an ordered list of assets.
The current watchlists can be retrieved by calling watchlist
without
arguments:
watchlist()
To start, create a watchlist named test
with Apple by specifying "c"
for create as the action
(wl <- watchlist("test", symbols = "AAPL", action = "c"))
## symbol id class exchange
## 1 AAPL b0b6dd9d-8b9b-48a9-ba46-b9d54906e415 us_equity NASDAQ
## name status tradable marginable shortable easy_to_borrow
## 1 Apple Inc. Common Stock active TRUE TRUE TRUE TRUE
## fractionable
## 1 TRUE
Watchlists can be retrieved by the user provided name
(test <- watchlist("test"))
## symbol id class exchange
## 1 AAPL b0b6dd9d-8b9b-48a9-ba46-b9d54906e415 us_equity NASDAQ
## name status tradable marginable shortable easy_to_borrow
## 1 Apple Inc. Common Stock active TRUE TRUE TRUE TRUE
## fractionable
## 1 TRUE
all.equal(test, wl, check.attributes = FALSE)
## [1] TRUE
Each watchlist tibble
has an info
attribute that stores details like
when it was created, lasted updated and more.
# Get it's info
attr(test, "info")
## $id
## [1] "dc9717bd-fcda-4325-9674-2803b91496c0"
##
## $account_id
## [1] "0ef8f355-319d-4de7-8d32-03f1e7e5aa69"
##
## $created_at
## [1] "2021-06-16 11:08:04 EDT"
##
## $updated_at
## [1] "2021-06-16 11:08:04 EDT"
##
## $name
## [1] "test"
Add FB, AMZN, NFLX, GOOG and update the watchlist name to FAANG. The
default for action
when a new_name
is specified is to a
dd new
symbols when changing the name. Similarly, if just a new_name
is
provided, the existing symbols
will be preserved.
(wl <- watchlist("test", new_name = "FAANG", symbols = c("FB", "AMZN", "NFLX", "GOOG")))
## symbol id class exchange
## 1 AAPL b0b6dd9d-8b9b-48a9-ba46-b9d54906e415 us_equity NASDAQ
## 2 FB fc6a5dcd-4a70-4b8d-b64f-d83a6dae9ba4 us_equity NASDAQ
## 3 AMZN f801f835-bfe6-4a9d-a6b1-ccbb84bfd75f us_equity NASDAQ
## 4 NFLX bb2a26c0-4c77-4801-8afc-82e8142ac7b8 us_equity NASDAQ
## 5 GOOG f30d734c-2806-4d0d-b145-f9fade61432b us_equity NASDAQ
## name status tradable marginable shortable
## 1 Apple Inc. Common Stock active TRUE TRUE TRUE
## 2 Facebook, Inc. Class A Common Stock active TRUE TRUE TRUE
## 3 Amazon.com, Inc. Common Stock active TRUE TRUE TRUE
## 4 Netflix, Inc. Common Stock active TRUE TRUE TRUE
## 5 Alphabet Inc. Class C Capital Stock active TRUE TRUE TRUE
## easy_to_borrow fractionable
## 1 TRUE TRUE
## 2 TRUE TRUE
## 3 TRUE TRUE
## 4 TRUE TRUE
## 5 TRUE TRUE
Individual assets can be added to or deleted from watchlists using
action = "add"
or "delete"
respectively ("a"
/"d"
for short).
(wl <- watchlist("FAANG", symbol = "GOOGL"))
## symbol id class exchange
## 1 AAPL b0b6dd9d-8b9b-48a9-ba46-b9d54906e415 us_equity NASDAQ
## 2 FB fc6a5dcd-4a70-4b8d-b64f-d83a6dae9ba4 us_equity NASDAQ
## 3 AMZN f801f835-bfe6-4a9d-a6b1-ccbb84bfd75f us_equity NASDAQ
## 4 NFLX bb2a26c0-4c77-4801-8afc-82e8142ac7b8 us_equity NASDAQ
## 5 GOOG f30d734c-2806-4d0d-b145-f9fade61432b us_equity NASDAQ
## 6 GOOGL 69b15845-7c63-4586-b274-1cfdfe9df3d8 us_equity NASDAQ
## name status tradable marginable shortable
## 1 Apple Inc. Common Stock active TRUE TRUE TRUE
## 2 Facebook, Inc. Class A Common Stock active TRUE TRUE TRUE
## 3 Amazon.com, Inc. Common Stock active TRUE TRUE TRUE
## 4 Netflix, Inc. Common Stock active TRUE TRUE TRUE
## 5 Alphabet Inc. Class C Capital Stock active TRUE TRUE TRUE
## 6 Alphabet Inc. Class A Common Stock active TRUE TRUE TRUE
## easy_to_borrow fractionable
## 1 TRUE TRUE
## 2 TRUE TRUE
## 3 TRUE TRUE
## 4 TRUE TRUE
## 5 TRUE TRUE
## 6 TRUE TRUE
(wl <- watchlist("FAANG", action = "d", symbols = "GOOGL"))
## symbol id class exchange
## 1 AAPL b0b6dd9d-8b9b-48a9-ba46-b9d54906e415 us_equity NASDAQ
## 2 FB fc6a5dcd-4a70-4b8d-b64f-d83a6dae9ba4 us_equity NASDAQ
## 3 AMZN f801f835-bfe6-4a9d-a6b1-ccbb84bfd75f us_equity NASDAQ
## 4 NFLX bb2a26c0-4c77-4801-8afc-82e8142ac7b8 us_equity NASDAQ
## 5 GOOG f30d734c-2806-4d0d-b145-f9fade61432b us_equity NASDAQ
## name status tradable marginable shortable
## 1 Apple Inc. Common Stock active TRUE TRUE TRUE
## 2 Facebook, Inc. Class A Common Stock active TRUE TRUE TRUE
## 3 Amazon.com, Inc. Common Stock active TRUE TRUE TRUE
## 4 Netflix, Inc. Common Stock active TRUE TRUE TRUE
## 5 Alphabet Inc. Class C Capital Stock active TRUE TRUE TRUE
## easy_to_borrow fractionable
## 1 TRUE TRUE
## 2 TRUE TRUE
## 3 TRUE TRUE
## 4 TRUE TRUE
## 5 TRUE TRUE
To replace all the symbols in a watchlist while renaming, specify
action = "update"
or "u"
for short.
(wl <- watchlist("FAANG", new_name = "FANG", symbols = c("FB", "AAPL", "NFLX", "GOOG"), action = "u"))
## symbol id class exchange
## 1 FB fc6a5dcd-4a70-4b8d-b64f-d83a6dae9ba4 us_equity NASDAQ
## 2 AAPL b0b6dd9d-8b9b-48a9-ba46-b9d54906e415 us_equity NASDAQ
## 3 NFLX bb2a26c0-4c77-4801-8afc-82e8142ac7b8 us_equity NASDAQ
## 4 GOOG f30d734c-2806-4d0d-b145-f9fade61432b us_equity NASDAQ
## name status tradable marginable shortable
## 1 Facebook, Inc. Class A Common Stock active TRUE TRUE TRUE
## 2 Apple Inc. Common Stock active TRUE TRUE TRUE
## 3 Netflix, Inc. Common Stock active TRUE TRUE TRUE
## 4 Alphabet Inc. Class C Capital Stock active TRUE TRUE TRUE
## easy_to_borrow fractionable
## 1 TRUE TRUE
## 2 TRUE TRUE
## 3 TRUE TRUE
## 4 TRUE TRUE
Delete the watchlist to start fresh.
watchlist("FANG", a = "d")
## Watchlist deleted successfully
## data frame with 0 columns and 0 rows
The market_data
function is designed to access market & pricing data 📈
provided by Alpaca or Polygon. Alpaca now provides data via the API
version 1 Market Data
Endpoint
& the API version 2 Market Data
Endpoint.
Data is also provided from Polygon’s Aggregates
Endpoint
with a valid POLYGON-KEY
. Choose the API via the v
parameter:
v = 1
for Alpaca’s v1 API.v = 2
for Alpaca’s v2 API (default).v = "p"
for the Polygon API.
The Alpaca v1 Data API consolidates data sources from five different exchanges.
- IEX (Investors Exchange LLC)
- NYSE National, Inc.
- Nasdaq BX, Inc.
- Nasdaq PSX
- NYSE Chicago, Inc.
The v2 API uses solely IEX, but provides more complete data for requests
that exceed the limit
via pagination.
Data is returned as a list of tsymble
s (one for each symbol provided
to ticker
) in OHLCV format 📊. Note: the Polygon API returns vw
,
the weighted volume, in addition to the raw volume. It also returns n
which indicates the number of datapoints aggregated to calculate the
value for the particular timeframe. (See the [endpoint docs for
details][Polygon’s Aggregates
Endpoint](https://polygon.io/docs/#get_v2_aggs_ticker__ticker__range__multiplier___timespan___from___to__anchor)).
A tsymble
is an S3 object with the symbol name as an attribute and
query info that can be retrieved like so
md <- market_data("AMZN", from = "2021-05-25", to = "2021-05-27")
## `limit` coerced to 10000
class(md)
## [1] "tsymble_ts" "tbl_ts" "tbl_df" "tbl" "data.frame"
get_sym(md)
## [1] "AMZN"
get_query(md)
## $status_code
## [1] 200
##
## $url
## [1] "https://data.alpaca.markets/v2/stocks/AMZN/bars?start=2021-05-25T00%3A00%3A00-00%3A00&end=2021-05-27T00%3A00%3A00-00%3A00&limit=10000&timeframe=1Day"
##
## $ts
## [1] "2021-06-16 11:08:08 EDT"
##
## $symbol
## [1] "AMZN"
##
## $next_page_token
## NULL
The only required input is the symbol(s) as a character vector, and it will return pricing data for the last day (if it’s a trading day) by day.
market_data("AMZN")
## `from` omitted. Set to 2021-06-15
## `to` omitted. Set to 2021-06-17
## `limit` coerced to 10000
## # A tsibble: 1 x 6 [1D]
## time open high low close volume
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-15 3383. 3397. 3363. 3383. 2424699
The function accepts different sets of optional arguments depending on
whether the Alpaca v1 API (v=1
) v2 API (v=2
) or Polygon Aggregates
API (v="p"
) is used, see ?market_data
for full details on which
arguments are used with each respective API.
To specify a date range to the v1 API, the from
, to
/ after
,
until
arguments can be used. These are inclusive/exclusive date bounds
respectively. Here, hourly data for the first seven days of January 2020
is retrieved inclusive:
market_data("amzn", v = 1, from = "2020-01-01", to = "2020-01-07")
#> 'limit' coerced to 1000
#> $AMZN
#> time open high low close volume
#> 1 2020-01-02 1874.79 1898.000 1864.150 1897.71 3583611
#> 2 2020-01-03 1864.50 1886.197 1864.500 1874.93 3293469
#> 3 2020-01-06 1860.00 1903.690 1860.000 1903.33 3598872
#> 4 2020-01-07 1904.50 1913.890 1892.043 1906.86 3569706
after
and until
can be used when v = 1
to make exclusive date
bounds.
market_data("amzn", after = "2020-01-02", until = "2020-01-07")
#> $AMZN
#> time open high low close volume
#> 1 2020-01-03 1864.5 1886.197 1864.5 1874.93 3293469
#> 2 2020-01-06 1860.0 1903.690 1860.0 1903.33 3598872
The v2 & Polygon APIs do not have exclusive date bound options, if
after/until
are used for these APIs they are considered from
/to
inclusive when sent to the API.
The options for the timeframe
argument using the v = 1
API include:
"m"
,"min"
,"minute"
"d"
,"day"
(the default)
When using a minute timeframe
, the multiplier
can by 1
, 5
, or
15
whereas when using timeframe = "day"
the only multiplier
available is 1
. The bar limit
argument can range from 1
to 1000
and has various default values according to the timeframe chosen. If
left blank, the limit
will default to 1000
. If the date range
includes more than 1000 bars and full = FALSE
, then the API will
return the 1000 most recent bars.
The v1 data API has two endpoints for retrieving the most recent quote
and trade data which are accessed by setting timeframe
to
"q", "qu", "quote", "lq", "last_quote"
or
"t","tr","trade", "lt","last_trade"
respectively.
The v2 API offers three timeframes, each with the default multiplier of one:
"m"
,"min"
,"minute"
"h"
,"hour"
"d"
,"day"
(the default)
The V2 API also offers quote, trade and snapshot endpoints that retrieve
quote and trade data for a given time period or a snapshot for a given
time period. WARNING These endpoints
return an enormous amount of data for each day. For example: a request
spanning a single day (ie 5/26-5/27) can take ~ 3m to retrieve. Use
timeframe
:
'tr'/'trade'
For historical trade data for a given ticker symbol on a specified date. See Trades.
market_data("BYND", timeframe = "t", from = "2021-06-09")
## `to` omitted. Set to 2021-06-10
## `limit` coerced to 10000
## 2345Binding 6 pages...
## # A tsibble: 32,935 x 7 [0.0149021014775059us] <America/New_York>
## time x p s c i z
## <dttm> <chr> <dbl> <int> <list> <int> <chr>
## 1 2021-06-09 04:00:05 P 153. 2 <chr [4]> 1 C
## 2 2021-06-09 04:03:05 Q 153. 2 <chr [4]> 1 C
## 3 2021-06-09 04:03:28 P 153. 1 <chr [4]> 2 C
## 4 2021-06-09 04:08:44 Q 153. 5 <chr [4]> 2 C
## 5 2021-06-09 04:12:36 Q 153. 7 <chr [3]> 3 C
## 6 2021-06-09 04:14:40 Q 153. 18 <chr [4]> 5 C
## 7 2021-06-09 04:15:37 K 153. 6 <chr [3]> 1 C
## 8 2021-06-09 04:15:43 Q 153. 6 <chr [3]> 6 C
## 9 2021-06-09 04:16:25 Q 153. 1 <chr [3]> 7 C
## 10 2021-06-09 04:17:11 P 153. 25 <chr [3]> 3 C
## # ... with 32,925 more rows
'qu'/'quote'
For NBBO quotes for a given ticker symbol at a specified date. See Quotes
market_data("BYND", timeframe = "q", from = "2021-06-09")
## `to` omitted. Set to 2021-06-10
## `limit` coerced to 10000
## 2345678Binding 9 pages...
## # A tsibble: 77,708 x 8 [0.99999999999987us] <America/New_York>
## time ax ap as bx bp bs c
## <dttm> <chr> <dbl> <int> <chr> <dbl> <int> <list>
## 1 2021-06-09 04:00:00 P 177 10 " " 0 0 <chr [1]>
## 2 2021-06-09 04:00:00 P 177 10 "P" 90.6 1 <chr [1]>
## 3 2021-06-09 04:00:00 P 177 10 "P" 110 1 <chr [1]>
## 4 2021-06-09 04:00:00 P 177 10 "P" 120. 1 <chr [1]>
## 5 2021-06-09 04:00:00 P 175 1 "P" 120. 1 <chr [1]>
## 6 2021-06-09 04:00:00 P 170 1 "P" 120. 1 <chr [1]>
## 7 2021-06-09 04:00:00 P 170 1 "P" 120 1 <chr [1]>
## 8 2021-06-09 04:00:00 P 168 1 "P" 120 1 <chr [1]>
## 9 2021-06-09 04:00:00 P 160 1 "P" 120 1 <chr [1]>
## 10 2021-06-09 04:00:00 P 158 1 "P" 120 1 <chr [1]>
## # ... with 77,698 more rows
'ss'/'snapshot'
The V2 API also offers asnapshot
endpoint that provides the latest trade, latest quote, minute bar daily bar and previous daily bar data for a given ticker symbol or symbols.
market_data(c("BYND", "VEGN"), timeframe = "ss")
## `from` omitted. Set to 2021-06-15
## `to` omitted. Set to 2021-06-17
## `limit` coerced to 10000
## $BYND
## $BYND$latestTrade
## # A tibble: 1 x 7
## time x p s c i z
## <dttm> <chr> <dbl> <int> <chr> <int> <chr>
## 1 2021-06-16 11:09:00 V 149. 100 @ 719 C
##
## $BYND$latestQuote
## # A tibble: 1 x 8
## time ax ap as bx bp bs c
## <dttm> <chr> <int> <int> <chr> <dbl> <int> <chr>
## 1 2021-06-16 11:10:00 V 170 2 V 143. 1 R
##
## $BYND$minuteBar
## # A tibble: 1 x 6
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-16 11:08:00 149. 149. 149. 149. 291
##
## $BYND$dailyBar
## # A tibble: 1 x 6
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-16 00:00:00 146. 151. 145. 149. 42979
##
## $BYND$prevDailyBar
## # A tibble: 1 x 6
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-15 00:00:00 150. 151. 143. 145. 123261
##
##
## $VEGN
## $VEGN$latestTrade
## # A tibble: 1 x 7
## time x p s c i z
## <dttm> <chr> <dbl> <int> <chr> <dbl> <chr>
## 1 2021-06-07 15:02:00 V 38.2 100 " " 5.53e13 B
##
## $VEGN$latestQuote
## # A tibble: 1 x 8
## time ax ap as bx bp bs c
## <dttm> <chr> <int> <int> <chr> <int> <int> <chr>
## 1 2021-06-15 16:00:00 V 0 0 V 0 0 R
##
## $VEGN$minuteBar
## # A tibble: 1 x 6
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-07 15:02:00 38.2 38.2 38.2 38.2 100
##
## $VEGN$dailyBar
## # A tibble: 1 x 6
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-07 00:00:00 38.2 38.2 38.2 38.2 100
##
## $VEGN$prevDailyBar
## # A tibble: 1 x 6
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-04-30 00:00:00 38.2 38.2 38.1 38.1 985
##
##
## attr(,"query")
## attr(,"query")$status_code
## [1] 200
##
## attr(,"query")$url
## [1] "https://data.alpaca.markets/v2/stocks/snapshots?symbols=BYND%2CVEGN"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:09:38 EDT"
The Polygon API Aggregates
Endpoint
is called when parameter v = "p"
, Additional arguments are
well-documented in the help file (see ?market_data
). Note that the
Polygon API does not have a limit
argument but has an implicit limit
of 50000 data points computed on the API end for which it is not easy to
predict the data that will be returned. If the range of times requested
from the API exceed what can be returned in a single call, the API will
generally return the data from the initial segment of the timeframe,
with a large gap, followed by the last few bars of data or it will
return the most recent data until the limit is reached leaving off the
oldest data. This behavior can be witnessed when full = F
(the
default). This behavior is what inspired the development of the
full = T
feature.
When full = T
(for both Alpaca v1 & Polygon APIs) the function will
attempt to anticipate what data is expected based on the range of dates
requested, and will re-query the API as many times as necessary to fill
the request. Any remaining gaps will be filled with NA
values,
allowing for omission or imputation of missing data as needed. If the
API is queried with the default full = F
and upon inspection, large
gaps are found in the data, try setting full = T
. If any issues arise,
please submit an issue.
Note Free accounts for the Polygon API
are limited to five requests per minute. If the rate limit is reached, a
cooldown timer of 60s will be triggered before the next query is sent -
be forewarned that this can result in long retrieval times for large
queries.
For a great primer on how the Polygon Aggregates Endpoint works, check out this article from the Polygon blog. The Polygon API allows for the following timeframes:
'm'
/'min'
/'minute'
'h'
/'hour'
'd'
/'day'
'w'
/'week'
'M'
/'mo'
/'month'
(Note capitalized M for month if using single letter abbreviation)'q'
/'quarter'
'y'
/'year'
Any integer can be supplied as the multiplier
argument, however,
atypical numbers can return unexpected results. The following
combinations of multiplier
and timeframe
values have been
systematically tested and prove to return expected data reliably:
'm'
:1
,5
,15
'h'
:1
'd'
:1
'w'
:1
,2
,4
'M'
:1
,2
,3
'q'
:1
'y'
:1
Note: With multiplier
greater than one, based on numerous trials for
the various timeframes it appears that the Polygon API takes the nearest
floor (previous) date based on the timeframe prior to the from
date
and begins providing data on the date that is multiplier * timeframe
later. For example, with the week timeframe the API will determine the
floor (previous) Sunday relative to the from
date and start on the
Sunday multiplier *
weeks from that floor Sunday.
When timeframe = "minute"
the API will return data for the entire
session of each trading day beginning in pre-market hours at 4AM
(Polygon) or 7AM (Alpaca) and concluding in after-market hours between
7PM (Alpaca) & 9PM (Polygon), however, the data outside of standard
trading hours has unexpected gaps at a higher frequency than that of
data for market hours 9:30A - 4:30P.
(bynd <- market_data("BYND", v = 2, time = "m", from = "2021-06-09"))
## `to` omitted. Set to 2021-06-10 04:00:00
## `limit` coerced to 10000
## # A tsibble: 428 x 6 [1m] <America/New_York>
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-09 07:02:00 153. 154. 153. 154. 490
## 2 2021-06-09 07:09:00 154. 154. 154. 154. 100
## 3 2021-06-09 07:22:00 154 154 154 154 334
## 4 2021-06-09 07:23:00 154. 154. 154. 154. 372
## 5 2021-06-09 08:01:00 154. 154. 154. 154. 200
## 6 2021-06-09 08:12:00 154. 154. 154. 154. 154
## 7 2021-06-09 08:14:00 154. 154. 154. 154. 120
## 8 2021-06-09 08:17:00 154. 154. 154. 154. 4202
## 9 2021-06-09 08:18:00 154. 155. 154. 155. 5002
## 10 2021-06-09 08:19:00 155. 155. 155. 155. 222
## # ... with 418 more rows
The returned data demonstrates how pre-market and after-market hours will tend to have gaps.
This can be illustrated by first retrieving the session hours for the day:
d <- "2021-06-09"
(cal <- calendar(from = d, to = d))
## date open close session_open session_close
## 1 2021-06-09 09:30 16:00 07:00 19:00
## day
## 1 2021-06-09 09:30:00 EDT--2021-06-09 16:00:00 EDT
## session dow
## 1 2021-06-09 07:00:00 EDT--2021-06-09 19:00:00 EDT Wed
and subsetting the typical trading day hours and those outside:
trading_hours <- bynd %>%
filter(lubridate::`%within%`(time, cal$day))
nontrading_hours <- bynd %>%
filter(!lubridate::`%within%`(time, cal$day))
We can the examine the gaps between time points by making a frequency table of the time differences between time points in market and non market hours. The name of each frequency in the table is the number of minutes of the gap while the value is the frequency of the gaps’ occurrence as a decimal.
Trading hours:
prop.table(table(diff(trading_hours$time)))
##
## 1 2 3
## 0.994832041 0.002583979 0.002583979
Non-trading hours:
prop.table(table(diff(nontrading_hours$time)))
##
## 1 2 3 4 5 6 7
## 0.12820513 0.15384615 0.05128205 0.07692308 0.02564103 0.05128205 0.02564103
## 8 9 11 12 13 14 18
## 0.02564103 0.07692308 0.02564103 0.02564103 0.10256410 0.02564103 0.02564103
## 19 22 31 32 35 38 394
## 0.02564103 0.02564103 0.02564103 0.02564103 0.02564103 0.02564103 0.02564103
Hours will span 4A (Polygon) 7A (Alpaca) to 9P (Polygon) or 7P (Alpaca)
for each trading day. Since this is an aggregate of minute timeframes,
most data will be returned with few, if any gaps, unless the range
requested exceeds the API limit. The v=2
API is the best source for
this data.
market_data("BYND", v = 2, time = "h", m = 1, from = "2020-05-01", to = "2020-05-02")
## to is a Saturday, Calendar API will return data for the previous Friday or following Monday
## `limit` coerced to 10000
## # A tsibble: 16 x 6 [1h] <America/New_York>
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2020-05-01 04:00:00 96.5 96.5 93.1 93.8 1702
## 2 2020-05-01 05:00:00 94.0 94.0 93.8 93.8 8924
## 3 2020-05-01 06:00:00 93.8 94.1 92 93 6198
## 4 2020-05-01 07:00:00 93.9 94.6 93 94.2 20012
## 5 2020-05-01 08:00:00 93.9 94.8 93.5 94.5 44637
## 6 2020-05-01 09:00:00 94.8 97.7 94 97.6 1251479
## 7 2020-05-01 10:00:00 97.7 98.7 95.2 95.8 791669
## 8 2020-05-01 11:00:00 95.8 95.8 91.3 92.3 1183098
## 9 2020-05-01 12:00:00 92.3 92.5 90.7 91.3 649933
## 10 2020-05-01 13:00:00 91.4 91.8 90.1 91.6 485007
## 11 2020-05-01 14:00:00 91.6 94.9 91.2 93.8 644146
## 12 2020-05-01 15:00:00 93.7 94.0 89.9 91.4 1361661
## 13 2020-05-01 16:00:00 91.5 92.0 91 91.5 71471
## 14 2020-05-01 17:00:00 91.5 91.6 91 91.2 9770
## 15 2020-05-01 18:00:00 91.1 91.2 90 90.6 5906
## 16 2020-05-01 19:00:00 90.6 91.2 90.6 91.2 4361
Days will span all trading days (generally M-F). calendar
or the
polygon
“Market Holidays” endpoint can be consulted to find
exceptions) for each week. Remember that the from
/to
arguments
accept Date objects as well as character objects. Any API version can be
used to retrieve day data.
market_data("BYND", v = 2, time = "d", m = 1, from = lubridate::as_date(d) - lubridate::weeks(1), to = lubridate::as_date(d))
## `limit` coerced to 10000
## # A tsibble: 5 x 6 [1D]
## time open high low close volume
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-06-02 135. 151. 135. 150. 9487590
## 2 2021-06-03 145. 150. 140. 143. 4861363
## 3 2021-06-04 144. 148. 142 146. 3026297
## 4 2021-06-07 148. 156. 146. 152. 6741454
## 5 2021-06-08 152. 157. 147. 153. 4085677
For all timeframes weeks and above, the polygon API must be used.
Weeks will be aggregated from days for the week following each Sunday. The date of the Sunday will correspond to all data for the following trading week. The following returns weekly data for each week that has passed since the turn of the last quarter.
market_data("BYND", v = "p", time = "w", m = 1, from = lubridate::floor_date(lubridate::as_date(d), "quarter"))
## `to` omitted. Set to 2021-04-05
## `limit` coerced to 50000
## # A tsibble: 2 x 8 [1W]
## time open high low close volume n vw
## <week> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021 W12 130. 135. 124. 131. 9066535 151547 129.
## 2 2021 W13 132. 141. 130. 130. 14186337 220190 134.
Months are aggregated by day for the entire month. The day represented in the time series varies based on the dates requested. Based on various inputs, the day might be the 30th, the 1st, or the 23rd of the month. However, if the request spans February, it could give the 30th of the months preceding February and the 1st for February and the months following. It’s unclear whether the data aggregated on a day for that month corresponds to all the days in that month, or all the days between that day in one month and that day in the previous month.
market_data("BYND", v = "p", time = "M", m = 1, from = lubridate::floor_date(lubridate::as_date(d), "year"), to = lubridate::as_date(d))
## `limit` coerced to 50000
## # A tsibble: 6 x 8 [1M]
## time open high low close volume n vw
## <mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021 Jan 126. 221 114. 178. 132218535 1795635 158.
## 2 2021 Feb 180. 184. 139. 145. 60570731 938746 163.
## 3 2021 Mar 150 155 124. 130. 72302298 1104803 138.
## 4 2021 Apr 132. 141. 127. 132. 44340921 729995 134.
## 5 2021 May 131. 154. 99.9 145. 114468101 1627645 123.
## 6 2021 Jun 143. 157. 132. 149. 51131411 774496 146.
Quarters will be represented by the following dates for each year:
- Q1: 03-30
- Q2: 06-30
- Q3: 09-30
- Q4: 12-30
market_data("BYND", v = "p", time = "q", m = 1, from = lubridate::floor_date(lubridate::as_date(d), "year"))
## `to` omitted. Set to 2021-04-02 07:30:00
## `limit` coerced to 50000
## # A tsibble: 2 x 8 [1Q]
## time open high low close volume n vw
## <qtr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021 Q1 126. 221 114. 130. 265091564 3839184 154.
## 2 2021 Q2 132. 157. 99.9 149. 209940433 3132136 131.
Years are aggregated on 12-31 of each year.
market_data("BYND", v = "p", time = "y", m = 1, from = lubridate::floor_date(lubridate::as_date(d), "year") - lubridate::years(4), to = d)
## `limit` coerced to 50000
## # A tsibble: 3 x 8 [1Y]
## time open high low close volume n vw
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2019 46 240. 45 75.6 1012290571 9478751 127.
## 2 2020 76.2 198. 48.2 125 1746648233 18916299 124.
## 3 2021 126. 221 99.9 149. 475031997 6971320 144.
Due to the API limits, the returned dataset may be missing substantial
amounts of data. This feature was developed to fetch complete datasets
before the V2 API was released. The V2 API now supports pagination and
AlpacaforR
will automatically fetch all pages associated with a
request. Using the V2 API is recommended for fetching large datasets.
The full
argument can be used to fetch full datasets with the V1 API
that has a limit
of 1000 bars, .
fr <- "2021-01-01"
to <- "2021-06-01"
(bars <- market_data("BYND", v = 1, time = "m", m = 5, from = fr, to = to))
## `limit` coerced to 1000
## # A tsibble: 1,000 x 6 [5m] <America/New_York>
## time open high low close volume
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2021-05-12 09:50:00 110. 111. 109. 109. 4119
## 2 2021-05-12 09:55:00 109. 109. 107. 107. 10557
## 3 2021-05-12 10:00:00 107 108. 107 107. 8889
## 4 2021-05-12 10:05:00 107. 108. 107. 107. 3408
## 5 2021-05-12 10:10:00 107. 107. 107. 107. 2009
## 6 2021-05-12 10:15:00 107. 107. 107. 107. 1210
## 7 2021-05-12 10:20:00 107. 108. 107. 107. 1680
## 8 2021-05-12 10:25:00 107. 107. 107. 107. 1438
## 9 2021-05-12 10:30:00 107. 107. 106. 106. 764
## 10 2021-05-12 10:35:00 106. 106. 106. 106. 1191
## # ... with 990 more rows
The returned data has 1000 bars, which is unlikely to contain the full dataset.
We can see what’s missing using a helper function called
expand_calendar
that provides a full timeseries of expected time
points for a given timeframe returned by calendar
. expand_calendar
has market_hours = TRUE
which will only return the expected time
points contained within market hours. Set to FALSE
to return the full
time panel.
cal <- calendar(from = fr, to = to)
expected <- tsibble::interval(bars) %>%
{expand_calendar(cal, timeframe = period_units(.), multiplier = period_multiplier(.))}
With the expected hours, we can see what’s missing:
missing <- setdiff(expected$time, bars$time)
length(missing)
## [1] 7147
lubridate::as_datetime(range(missing))
## [1] "2021-01-04 14:30:00 UTC" "2021-06-01 20:00:00 UTC"
By setting full = TRUE
we can expect to get a dataset with virtually
all the market hours (rather than session hours) accounted for. Due to
the multiple queries it will take more time.
bars <- market_data("BYND", v = 1, time = "m", m = 5, from = fr, to = to, full = TRUE)
## `limit` coerced to 1000
missing <- setdiff(expected$time, bars$time) %>%
subset(subset = . < lubridate::as_datetime(to)) %>%
lubridate::as_datetime(tz = "America/New_York")
length(missing)
## [1] 549
head(missing, 20)
## [1] "2021-01-04 13:35:00 EST" "2021-01-04 14:10:00 EST"
## [3] "2021-01-04 14:15:00 EST" "2021-01-04 16:00:00 EST"
## [5] "2021-01-05 12:35:00 EST" "2021-01-05 13:20:00 EST"
## [7] "2021-01-05 13:45:00 EST" "2021-01-05 16:00:00 EST"
## [9] "2021-01-06 16:00:00 EST" "2021-01-07 16:00:00 EST"
## [11] "2021-01-08 16:00:00 EST" "2021-01-11 16:00:00 EST"
## [13] "2021-01-12 12:25:00 EST" "2021-01-12 16:00:00 EST"
## [15] "2021-01-13 16:00:00 EST" "2021-01-14 16:00:00 EST"
## [17] "2021-01-15 16:00:00 EST" "2021-01-19 16:00:00 EST"
## [19] "2021-01-20 16:00:00 EST" "2021-01-21 13:00:00 EST"
tail(missing, 20)
## [1] "2021-05-18 16:00:00 EDT" "2021-05-19 10:50:00 EDT"
## [3] "2021-05-19 13:00:00 EDT" "2021-05-19 13:10:00 EDT"
## [5] "2021-05-19 16:00:00 EDT" "2021-05-20 13:25:00 EDT"
## [7] "2021-05-20 16:00:00 EDT" "2021-05-21 10:20:00 EDT"
## [9] "2021-05-21 11:20:00 EDT" "2021-05-21 12:10:00 EDT"
## [11] "2021-05-21 12:20:00 EDT" "2021-05-21 12:45:00 EDT"
## [13] "2021-05-21 12:55:00 EDT" "2021-05-21 15:25:00 EDT"
## [15] "2021-05-21 16:00:00 EDT" "2021-05-24 16:00:00 EDT"
## [17] "2021-05-25 16:00:00 EDT" "2021-05-26 16:00:00 EDT"
## [19] "2021-05-27 16:00:00 EDT" "2021-05-28 16:00:00 EDT"
Note that there is still missing data which are likely time points where the price did not change or for which the API simply doesn’t have a record.
See ?market_data
for more details or visit the Market Data Endpoint
docs
to learn more.
Note Alpaca’s agreement with Polygon ended in January 2021. A Polygon subscription is required to use the Polygon API, and the subscription level determines what Polygon endpoints are available. The
polygon
function and docs are up to date as of 2021-06-11 but will no longer be maintained. If you have a Polygon subscription and wish to help maintain this functionality please email the maintainer.
AlpacaforR
provides a single go-to function to access all of the
available Polygon endpoints: polygon
. This function takes as it’s
first argument ep
, short for endpoint, which can be the full name of
the endpoint as it appears in the Docs or a
one to two letter abbreviation of the endpoint which is typically the
first letter of each of the first two words (that aren’t wrapped in
parentheses) of the name of the endpoint. The one exception being
Snapshot - Single Ticker (st
), which would otherwise conflict with
Stock Splits (ss
). For ease of referencing all of the Polygon
endpoints without leaving R, the documentation for ?polygon
elaborates
the names of the endpoints, their descriptions, details and parameters.
Additionally, the polygon
function itself provides reference tibbles
of the abbreviations and full names of the endpoints by using 'all'
as
the value for ep
to show all endpoints, 'ref'/'reference'
for all
the reference endpoints, 'sto'/'stocks'
for all the stock/equity
endpoints.
polygon("all")
#> name
#> t Tickers
#> tt Ticker Types
#> td Ticker Details
#> tn Ticker News
#> m Markets
#> l Locales
#> ss Stock Splits
#> sd Stock Dividends
#> sf Stock Financials
#> ms Market Status
#> mh Market Holidays
#> e Exchanges
#> ht Historic Trades
#> hq Historic Quotes (NBBO)
#> lt Last Trade for a Symbol
#> lq Last Quote for a Symbol
#> do Daily Open/Close
#> cm Condition Mappings
#> sa Snapshot - All tickers
#> st Snapshot - Single Ticker
#> sg Snapshot - Gainers/Losers
#> pc Previous Close
#> a Aggregates (Bars)
#> gd Grouped Daily (Bars)
A plus (+
) can be appended to the end of any of these reference
keywords, or the abbreviation/name of an endpoint to view a helpful
reference list with the following for each endpoint:
- The full name of the endpoint
- the description
- the URL for the documentation
- the URL of the endpoint itself
- the parameters, with the default always in first position when options are available. When endpoints that take parameters are called without explicitly providing parameters, these defaults are used to call the endpoint.
polygon("hq+")
#> $hq
#> $hq$nm
#> [1] "Historic Quotes (NBBO)"
#>
#> $hq$desc
#> [1] "Get historic NBBO quotes for a ticker."
#>
#> $hq$href
#> [1] "https://polygon.io/docs/#get_v2_ticks_stocks_nbbo__ticker___date__anchor"
#>
#> $hq$url
#> [1] "/v2/ticks/stocks/nbbo/{ticker}/{date}"
#>
#> $hq$params
#> $hq$params$ticker
#> [1] "AAPL"
#>
#> $hq$params$date
#> [1] "2018-02-02"
#>
#> $hq$params$timestamp
#> $hq$params$timestamp[[1]]
#> NULL
#>
#> $hq$params$timestamp[[2]]
#> [1] 1
#>
#>
#> $hq$params$timestampLimit
#> $hq$params$timestampLimit[[1]]
#> NULL
#>
#> $hq$params$timestampLimit[[2]]
#> [1] 1
#>
#>
#> $hq$params$reverse
#> $hq$params$reverse[[1]]
#> NULL
#>
#> $hq$params$reverse[[2]]
#> [1] TRUE
#>
#> $hq$params$reverse[[3]]
#> [1] FALSE
#>
#>
#> $hq$params$limit
#> [1] 10 50000
Many endpoints require parameters to be specified. The parameters can be specified as either named arguments passed to the function directly
polygon("hq", ticker = "BYND", date = "2020-04-02")
#> # A tibble: 10 x 11
#> time y q c z p s x P S
#> <dttm> <dbl> <int> <lis> <int> <dbl> <int> <int> <int> <int>
#> 1 2020-04-02 04:00:00 1.59e18 2117 <int~ 3 55 10 11 0 0
#> 2 2020-04-02 04:01:03 1.59e18 3597 <int~ 3 64.5 1 12 66 2
#> 3 2020-04-02 04:20:39 1.59e18 13319 <int~ 3 64.2 1 11 66 2
#> 4 2020-04-02 04:20:39 1.59e18 13320 <int~ 3 64.4 1 12 66 2
#> 5 2020-04-02 04:27:54 1.59e18 16526 <int~ 3 64.4 5 12 66 2
#> 6 2020-04-02 04:28:06 1.59e18 16648 <int~ 3 64.4 1 12 66 2
#> 7 2020-04-02 04:28:06 1.59e18 16649 <int~ 3 64.4 6 12 66 2
#> 8 2020-04-02 04:36:16 1.59e18 19827 <int~ 3 64.5 1 12 66 2
#> 9 2020-04-02 04:42:13 1.59e18 21705 <int~ 3 64.5 2 12 66 2
#> 10 2020-04-02 04:48:30 1.59e18 23979 <int~ 3 64.5 3 12 66 2
#> # ... with 1 more variable: X <int>
or as a list with values named according to the parameter name.
polygon("Last Quote+")
#> $lq
#> $lq$nm
#> [1] "Last Quote for a Symbol"
#>
#> $lq$desc
#> [1] "Get the last quote tick for a given stock."
#>
#> $lq$href
#> [1] "https://polygon.io/docs/#get_v1_last_quote_stocks__symbol__anchor"
#>
#> $lq$url
#> [1] "/v1/last_quote/stocks/{symbol}"
#>
#> $lq$params
#> $lq$params$symbol
#> [1] "AAPL"
# the following are equivalent
polygon("lq", params = list(symbol = "BYND"))
#> # A tibble: 1 x 7
#> askexchange askprice asksize bidexchange bidprice bidsize timestamp
#> <int> <dbl> <int> <int> <dbl> <int> <dttm>
#> 1 11 124. 1 12 124. 1 2020-05-29 14:49:03
polygon("lq", symbol = "BYND")
#> # A tibble: 1 x 7
#> askexchange askprice asksize bidexchange bidprice bidsize timestamp
#> <int> <dbl> <int> <int> <dbl> <int> <dttm>
#> 1 11 124. 1 12 124. 1 2020-05-29 14:49:03
Some endpoints provide query status info or map details (the data
classes of the values in the returned object) and other information that
can be accessed using get_query(obj)
or attr(obj, "map")
respectively (where obj
is the object returned by polygon
).
Getting, submitting, and canceling 🚫 orders are also made easy through
orders
and order_submit
. Visit the Orders Endpoint
docs to
learn everything there is to know about the requests and responses for
this API.
To view open orders for the paper account, use orders()
as the default
status
is set to "open"
.
orders()
## No orders for the selected query/filter criteria.
## Check `symbol_id` or set status = 'all' to see all orders.
## list()
## attr(,"query")
## attr(,"query")$status_code
## [1] 200
##
## attr(,"query")$url
## [1] "https://paper-api.alpaca.markets/v2/orders?status=open&direction=desc&nested=TRUE"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:10:03 EDT"
Alternatively, set the status
to "open"
, "closed"
, or "all"
to
see specific subsets of orders based on their status. Note that the default limit
is 50
. To
return more or less than 50, limit
must be set explicitly.
orders(status = "all", limit = 10)
## # A tibble: 10 x 32
## id client_order_id created_at updated_at
## <chr> <chr> <dttm> <dttm>
## 1 8037e248-e151-~ 39af777b-2b42-458d-8~ 2021-06-12 14:45:12 2021-06-14 16:00:32
## 2 4bc78105-476a-~ 34182540-97f9-4de4-8~ 2021-06-10 15:20:14 2021-06-10 15:20:14
## 3 d7c2694b-0af2-~ e86cd748-8881-4107-a~ 2021-06-10 15:20:13 2021-06-10 15:20:14
## 4 40198680-491f-~ e86cd748-8881-4107-a~ 2021-06-10 15:19:41 2021-06-10 15:20:13
## 5 acf051d0-033a-~ e86cd748-8881-4107-a~ 2021-06-10 15:19:41 2021-06-10 15:20:13
## 6 e86cd748-8881-~ 5d7a90d2-6a91-48cd-9~ 2021-06-10 15:19:40 2021-06-10 15:19:41
## 7 aa6b2e40-1f8b-~ 82da945e-3160-4c9a-8~ 2021-06-10 15:14:09 2021-06-10 15:14:09
## 8 82da945e-3160-~ 3782868a-87f7-4b88-a~ 2021-06-10 15:14:08 2021-06-10 15:14:08
## 9 7a2baf81-f295-~ 2b4900e9-9fd5-409c-8~ 2021-06-10 13:35:43 2021-06-10 13:35:43
## 10 d0262758-d9f6-~ 243e3f1f-248d-46bc-a~ 2021-06-10 13:10:56 2021-06-10 13:19:03
## # ... with 28 more variables: submitted_at <dttm>, filled_at <dttm>,
## # expired_at <dttm>, canceled_at <dttm>, failed_at <dttm>,
## # replaced_at <dttm>, replaced_by <chr>, replaces <chr>, asset_id <chr>,
## # symbol <chr>, asset_class <chr>, notional <lgl>, qty <dbl>,
## # filled_qty <dbl>, filled_avg_price <chr>, order_class <chr>,
## # order_type <chr>, type <chr>, side <chr>, time_in_force <chr>,
## # limit_price <chr>, stop_price <dbl>, status <chr>, extended_hours <lgl>,
## # legs <list>, trail_percent <lgl>, trail_price <lgl>, hwm <lgl>
In R, all arguments can be partial, ie abbreviated, up to the number of characters necessary to differentiate the argument from other arguments provided to the function. Here is the shorthand to view all orders placed since the beginning of the week:
(orders_this_week <- orders(st = "a", a = lubridate::floor_date(lubridate::today(), "week"), lim = 10))
## No orders for the selected query/filter criteria.
## Check `symbol_id` or set status = 'all' to see all orders.
## list()
## attr(,"query")
## attr(,"query")$status_code
## [1] 200
##
## attr(,"query")$url
## [1] "https://paper-api.alpaca.markets/v2/orders?status=all&limit=10&after=2021-06-13&direction=desc&nested=TRUE"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:10:06 EDT"
Note complex orders will automatically
appear nested in the returned tibble. To change this behavior, set
nested = F
.
Individual orders can be called by providing their id to symbol_id
(the first argument):
if (isTRUE(nrow(orders_this_week) > 0)) {
# Works only if there are existing orders
(fo <- orders(orders_this_week[1,]$id))
all.equal(unlist(orders_this_week[1,]), unlist(fo), check.attributes = FALSE)
}
Individual orders can also be called by providing the client order ID to
symbol_id
and setting client_order_id = T
.
if (isTRUE(nrow(orders_this_week) > 0)) {
# Works only if there are existing orders
orders(orders_this_week[1,]$client_order_id, client_order_id = T)
}
order_submit
handles any kind of order. The value supplied to the
action
argument determines what type of action will be taken and what
parameters are required. The types or orders and their corresponding
action
are:
- a new order
action = "s"/"submit"
Default - a complex or trailing stop order
action = "s"/"submit"
- an order replacement
action = "r"/"replace"
- an order cancellation
action = "c"/"cancel"
- or canceling all orders
action = "cancel_all"
A simple use case where a buy order for two shares of Beyond Meat is placed is below:
# is the market open?
(.open <- clock()$is_open)
## [1] TRUE
#> [1] TRUE
if (.open) {
# if the market is open then place a market buy order for "BYND"
(bo <- order_submit("bynd", side = "b", q = 2, type = "m"))
}
## # A tibble: 1 x 32
## id client_order_id created_at updated_at
## <chr> <chr> <dttm> <dttm>
## 1 f18d28c7-452f-4~ bf984110-0cc0-4a97-a~ 2021-06-16 11:10:06 2021-06-16 11:10:06
## # ... with 28 more variables: submitted_at <dttm>, filled_at <dttm>,
## # expired_at <dttm>, canceled_at <dttm>, failed_at <dttm>,
## # replaced_at <dttm>, replaced_by <lgl>, replaces <lgl>, asset_id <chr>,
## # symbol <chr>, asset_class <chr>, notional <lgl>, qty <dbl>,
## # filled_qty <dbl>, filled_avg_price <lgl>, order_class <chr>,
## # order_type <chr>, type <chr>, side <chr>, time_in_force <chr>,
## # limit_price <lgl>, stop_price <lgl>, status <chr>, extended_hours <lgl>,
## # legs <lgl>, trail_percent <lgl>, trail_price <lgl>, hwm <lgl>
order_submit
has extensive built-in auto-assumption of omitted
arguments where they can be assumed based on other provided arguments.
The documentation (?order_submit
) and the examples therein go into
detail as to the required parameters necessary to invoke accurate
auto-assumption for each action. Since traders will often place a stop,
limit, or stop limit order following a buy order to mitigate downside
risk, an ‘expedited sell’ is one such auto-assumption feature. To
execute an ‘expedited sell’, the function needs only the Order tibble
(assuming it contains the id
row) of the buy order, and the specifics
of the sell order.
To set appropriate stops and limits it’s necessary to know the current price of the stock.
(lq <- market_data(timeframe = "lq", symbol = "bynd"))
## `from` omitted. Set to 2021-06-15
## `to` omitted. Set to 2021-06-17
## `limit` coerced to 10000
## # A tibble: 1 x 8
## time ax ap as bx bp bs c
## <dttm> <chr> <int> <int> <chr> <dbl> <int> <chr>
## 1 2021-06-16 11:10:03 V 152 1 V 143. 1 R
With this information, a stop order can be placed at the price 5% lower
than what it was bought at. To connect this sell order to the buy order
for cost basis reporting purposes, set client_order_id = T
and the
client_order_id
for this sell order will be set to the Order ID of the
buy order.
if (.open) {
(so <- order_submit(bo$id, stop = lq$ap * .95, client_order_id = T))
}
## `side` set to 'sell'
## `qty` set to 2
## `symbol_id` set to BYND
## `client_order_id` set to f18d28c7-452f-474e-8b9d-3584ab5de7aa
## `type` set to 'stop'
## # A tibble: 1 x 32
## id client_order_id created_at updated_at
## <chr> <chr> <dttm> <dttm>
## 1 467c03d2-9adb-4~ f18d28c7-452f-474e-8~ 2021-06-16 11:10:09 2021-06-16 11:10:09
## # ... with 28 more variables: submitted_at <dttm>, filled_at <dttm>,
## # expired_at <dttm>, canceled_at <dttm>, failed_at <dttm>,
## # replaced_at <dttm>, replaced_by <lgl>, replaces <lgl>, asset_id <chr>,
## # symbol <chr>, asset_class <chr>, notional <lgl>, qty <dbl>,
## # filled_qty <dbl>, filled_avg_price <lgl>, order_class <chr>,
## # order_type <chr>, type <chr>, side <chr>, time_in_force <chr>,
## # limit_price <lgl>, stop_price <dbl>, status <chr>, extended_hours <lgl>,
## # legs <lgl>, trail_percent <lgl>, trail_price <lgl>, hwm <lgl>
Informative messages indicate where the function made assumptions about the values for other arguments.
To extend the example, suppose the price of BYND went up since the order
was first placed, yet the stop is still set at 5% lower from where the
order was bought. It would be wise to move the stop order up a bit to
follow the price action. This can be done for simple orders (of which
this is one), with action = 'replace'
. The replacement order will have
a field replaces
that will indicate the order it replaced, in this
case the previous sell order. The sell order placed above was linked to
the buy order via the client_order_id
such that cost basis can
accurately be reported. However, client_order_id
must be unique for
each order. So how does one keep this replacement order connected to the
original buy order?
The simplest way to do so is to provide a custom client_order_id
with
an incremented suffix appended for each successive replacement order.
The full length of the client_order_id
must be under 48
characters
and the Alpaca generated IDs are 36
characters, which leaves
48 − 36 = 12 characters for the suffix. This tracking method can be
especially useful if implementing a trailing stop for a given buy order
that will refresh often.
Here the client_order_id
is created:
(client_order_id <- paste0(bo$id,".2"))
## [1] "f18d28c7-452f-474e-8b9d-3584ab5de7aa.2"
nchar(client_order_id)
## [1] 38
The replacement order can now be placed with a higher stop and remain
effectively linked to it’s original buy order via the first 36
characters of it’s client_order_id
if (.open && isTRUE(nrow(so) > 0)) {
(ro <- order_submit(so$id, a = "r", stop = lq$ap * .96, client_order_id = client_order_id))
}
## # A tibble: 1 x 32
## id client_order_id created_at updated_at
## <chr> <chr> <dttm> <dttm>
## 1 efd4e5fb-1c84-~ f18d28c7-452f-474e-8b~ 2021-06-16 11:10:09 2021-06-16 11:10:41
## # ... with 28 more variables: submitted_at <dttm>, filled_at <dttm>,
## # expired_at <dttm>, canceled_at <dttm>, failed_at <dttm>,
## # replaced_at <dttm>, replaced_by <lgl>, replaces <chr>, asset_id <chr>,
## # symbol <chr>, asset_class <chr>, notional <lgl>, qty <dbl>,
## # filled_qty <dbl>, filled_avg_price <lgl>, order_class <chr>,
## # order_type <chr>, type <chr>, side <chr>, time_in_force <chr>,
## # limit_price <lgl>, stop_price <dbl>, status <chr>, extended_hours <lgl>,
## # legs <lgl>, trail_percent <lgl>, trail_price <lgl>, hwm <lgl>
However, it’s also possible that the trader would like to take a profit
if the price moves up another 5% while simultaneously having a stop in
place to prevent losses. An Advanced
Order
called “O
ne C
ancels O
ther” is perfect for this situation. First,
the replacement order needs to be canceled.
if (.open && isTRUE(nrow(ro) > 0)) {
order_submit(ro$id, a = "c")
}
## Order canceled successfully
## list()
## attr(,"query")
## attr(,"query")$status_code
## [1] 204
##
## attr(,"query")$url
## [1] "https://paper-api.alpaca.markets/v2/orders/efd4e5fb-1c84-4f8e-96d3-70e12a91db46"
##
## attr(,"query")$ts
## [1] "2021-06-16 11:10:42 EDT"
The oco
order requires two additional parameters, an upper limit order
provided to the argument take_profit
as a named list, with a single
item named 'limit_price'/'l'
:
take_profit <- list(l = lq$ap * 1.05)
and a lower limit, stop or both specified to stop_loss
as a named list
with the names 'stop_price'/'s'
& 'limit_price'/'l'
:
stop_loss <- list(s = lq$ap * .95)
Now the oco
order class can be placed by providing the id of the
original buy order to passively set argument defaults. Another increment
to the client_order_id
can links this order to the original buy order.
if (.open) {
(oco <- order_submit(bo$id, order_class = "oco", time_in_force = "gtc", client_order_id = paste0(bo$id,".3"), take_profit = take_profit, stop_loss = stop_loss))
}
## `side` set to 'sell'
## `qty` set to 2
## `symbol_id` set to BYND
## order_class: 'oco' requires type = 'limit'. `type` set to 'limit'.
## # A tibble: 1 x 32
## id client_order_id created_at updated_at
## <chr> <chr> <dttm> <dttm>
## 1 5e9eb216-61e9-~ f18d28c7-452f-474e-8b~ 2021-06-16 11:10:43 2021-06-16 11:10:43
## # ... with 28 more variables: submitted_at <dttm>, filled_at <dttm>,
## # expired_at <dttm>, canceled_at <dttm>, failed_at <dttm>,
## # replaced_at <dttm>, replaced_by <lgl>, replaces <lgl>, asset_id <chr>,
## # symbol <chr>, asset_class <chr>, notional <lgl>, qty <dbl>,
## # filled_qty <dbl>, filled_avg_price <lgl>, order_class <chr>,
## # order_type <chr>, type <chr>, side <chr>, time_in_force <chr>,
## # limit_price <dbl>, stop_price <lgl>, status <chr>, extended_hours <lgl>,
## # legs <df[,32]>, trail_percent <lgl>, trail_price <lgl>, hwm <lgl>
The additional linked orders for any Advanced Order can be viewed as
it’s legs
. When submitting an order, the default response is to return
the legs
nested under the top level order. When calling orders
,
order legs can be unnested such that each row is a separate order by
setting nested = F
:
if (.open) {
oco$legs
}
## id client_order_id
## 1 f57e27fa-f0ad-4eb0-9219-017d5c68ec4d 965da2b5-9a02-4f51-b05e-60d433197989
## created_at updated_at submitted_at filled_at
## 1 2021-06-16 11:10:43 2021-06-16 11:10:43 2021-06-16 11:10:43 <NA>
## expired_at canceled_at failed_at replaced_at replaced_by replaces
## 1 <NA> <NA> <NA> <NA> NA NA
## asset_id symbol asset_class notional qty
## 1 317faf0e-4956-4d40-b3eb-3fba8af59dca BYND us_equity NA 2
## filled_qty filled_avg_price order_class order_type type side time_in_force
## 1 0 NA oco stop stop sell gtc
## limit_price stop_price status extended_hours legs trail_percent trail_price
## 1 NA 144.4 held FALSE NA NA NA
## hwm
## 1 NA
All open orders can be canceled by using the "cancel_all"
keyword as
the action
order_submit(action = "cancel_all")
## # A tibble: 1 x 32
## asset_class asset_id canceled_at client_order_id created_at
## <chr> <chr> <dttm> <chr> <dttm>
## 1 us_equity 317faf0e-~ NA f18d28c7-452f-~ 2021-06-16 11:10:43
## # ... with 27 more variables: expired_at <dttm>, extended_hours <lgl>,
## # failed_at <dttm>, filled_at <dttm>, filled_avg_price <lgl>,
## # filled_qty <dbl>, hwm <lgl>, id <chr>, legs <lgl>, limit_price <dbl>,
## # notional <lgl>, order_class <chr>, order_type <chr>, qty <dbl>,
## # replaced_at <dttm>, replaced_by <lgl>, replaces <lgl>, side <chr>,
## # status <chr>, stop_price <lgl>, submitted_at <dttm>, symbol <chr>,
## # time_in_force <chr>, trail_percent <lgl>, trail_price <lgl>, type <chr>,
## # updated_at <dttm>
order_submit
is a versatile function, see it’s documentation and
examples to learn about all it has to offer.
All current positions or only the positions specified by symbols
are
retrieved by calling positions()
. positions
has multiple actions:
"get"/"g"
positions (the default)"close"/"c"
a position or positions provided byticker
"close_all"
which will cancel all open orders on currently held positions and then close those positions by selling all shares. Think ofaction = "close_all"
as an emergency kill switch that will liquidate all positions.
Visit the Positions endpoint docs to learn more.
Retrieve all positions:
#If paper account:
positions()
## # A tibble: 1 x 16
## asset_id symbol exchange asset_class qty avg_entry_price side market_value
## <chr> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl>
## 1 317faf0e~ BYND NASDAQ us_equity 2 149. long 298.
## # ... with 8 more variables: cost_basis <dbl>, unrealized_pl <dbl>,
## # unrealized_plpc <dbl>, unrealized_intraday_pl <dbl>,
## # unrealized_intraday_plpc <dbl>, current_price <dbl>, lastday_price <dbl>,
## # change_today <dbl>
If a position exists, it can be closed using action = "cancel"
positions("BYND", action = "c")
## # A tibble: 1 x 32
## id client_order_id created_at updated_at
## <chr> <chr> <dttm> <dttm>
## 1 ffe7b215-3bfa-4~ b1fec025-b90f-468f-a~ 2021-06-16 11:10:45 2021-06-16 11:10:45
## # ... with 28 more variables: submitted_at <dttm>, filled_at <dttm>,
## # expired_at <dttm>, canceled_at <dttm>, failed_at <dttm>,
## # replaced_at <dttm>, replaced_by <lgl>, replaces <lgl>, asset_id <chr>,
## # symbol <chr>, asset_class <chr>, notional <lgl>, qty <dbl>,
## # filled_qty <dbl>, filled_avg_price <lgl>, order_class <chr>,
## # order_type <chr>, type <chr>, side <chr>, time_in_force <chr>,
## # limit_price <lgl>, stop_price <lgl>, status <chr>, extended_hours <lgl>,
## # legs <lgl>, trail_percent <lgl>, trail_price <lgl>, hwm <lgl>
All positions are closed using action = "close_all"
positions(a = "close_all")
#> No positions are open at this time.
#> list()
#> attr(,"query")
#> attr(,"query")$ts
#> [1] "2021-06-10 13:35:53 EDT"
#>
#> attr(,"query")$status_code
#> [1] 207
#>
#> attr(,"query")$url
#> [1] "https://paper-api.alpaca.markets/v2/positions?cancel_orders=TRUE"
The package also supports Alpaca’s & Polygon’s Websockets/Streaming
APIs. See the Websockets vignette for more on how to use Alpaca’s
streaming service. vignette("AlpacaforR", "Websockets")