This repository includes visual prediction tasks for the paper Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models
@inproceedings{neitz2018adaptive,
title={Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models},
author={Neitz, Alexander and Parascandolo, Giambattista and Bauer, Stefan and Sch{\"o}lkopf, Bernhard},
booktitle={Advances in Neural Information Processing Systems (NIPS)},
year={2018}
}
See repository adaptive-skip-intervals for an implementation of the ASI algorithm.
Currently implemented tasks are:
-
Funnel board:
Task: Given first frame of the trajectory, predict platform where the ball will land. -
Room runner:
Task: Given the first frame of the trajectory, predict color of the room in which the green dot will end up.
- box2d==2.3.2
- cairocffi==0.8.0
- gizeh=0.1.10
- imageio==2.1.2
- moviepy==0.2.3.2
- numpy==1.14.0
- pillow==5.0.0
- tqdm==4.11.2
- tensorflow==1.5.0
Room runner:
python -m generate.generate_dataset --dataset rr --seed 1234 --n_trajectories 500 --output_dir /path/to/dataset/directory/
Funnel board:
python -m generate.generate_dataset --dataset fubo --seed 1234 --n_trajectories 500 --output_dir /path/to/dataset/directory/
Use --n_processes N
to use N parallel workers (results in nondeterministic ordering of examples).