-
Notifications
You must be signed in to change notification settings - Fork 456
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
page_service: add benchmark for batching #9820
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
problame
added
the
run-benchmarks
Indicates to the CI that benchmarks should be run for PR marked with this label
label
Nov 20, 2024
This was referenced Nov 20, 2024
5607 tests run: 5371 passed, 0 failed, 236 skipped (full report)Code coverage* (full report)
* collected from Rust tests only The comment gets automatically updated with the latest test results
18f2964 at 2024-11-25T09:13:22.691Z :recycle: |
bayandin
reviewed
Nov 20, 2024
test_runner/performance/pageserver/test_pageserver_getpage_merge.py
Outdated
Show resolved
Hide resolved
VladLazar
approved these changes
Nov 20, 2024
problame
commented
Nov 20, 2024
test_runner/performance/pageserver/test_pageserver_getpage_merge.py
Outdated
Show resolved
Hide resolved
VladLazar
approved these changes
Nov 21, 2024
problame
removed
the
run-benchmarks
Indicates to the CI that benchmarks should be run for PR marked with this label
label
Nov 22, 2024
bayandin
approved these changes
Nov 25, 2024
github-merge-queue bot
pushed a commit
that referenced
this pull request
Nov 30, 2024
# Problem The timeout-based batching adds latency to unbatchable workloads. We can choose a short batching timeout (e.g. 10us) but that requires high-resolution timers, which tokio doesn't have. I thoroughly explored options to use OS timers (see [this](#9822) abandoned PR). In short, it's not an attractive option because any timer implementation adds non-trivial overheads. # Solution The insight is that, in the steady state of a batchable workload, the time we spend in `get_vectored` will be hundreds of microseconds anyway. If we prepare the next batch concurrently to `get_vectored`, we will have a sizeable batch ready once `get_vectored` of the current batch is done and do not need an explicit timeout. This can be reasonably described as **pipelining of the protocol handler**. # Implementation We model the sub-protocol handler for pagestream requests (`handle_pagrequests`) as two futures that form a pipeline: 2. Batching: read requests from the connection and fill the current batch 3. Execution: `take` the current batch, execute it using `get_vectored`, and send the response. The Reading and Batching stage are connected through a new type of channel called `spsc_fold`. See the long comment in the `handle_pagerequests_pipelined` for details. # Changes - Refactor `handle_pagerequests` - separate functions for - reading one protocol message; produces a `BatchedFeMessage` with just one page request in it - batching; tried to merge an incoming `BatchedFeMessage` into an existing `BatchedFeMessage`; returns `None` on success and returns back the incoming message in case merging isn't possible - execution of a batched message - unify the timeline handle acquisition & request span construction; it now happen in the function that reads the protocol message - Implement serial and pipelined model - serial: what we had before any of the batching changes - read one protocol message - execute protocol messages - pipelined: the design described above - optionality for execution of the pipeline: either via concurrent futures vs tokio tasks - Pageserver config - remove batching timeout field - add ability to configure pipelining mode - add ability to limit max batch size for pipelined configurations (required for the rollout, cf neondatabase/cloud#20620 ) - ability to configure execution mode - Tests - remove `batch_timeout` parametrization - rename `test_getpage_merge_smoke` to `test_throughput` - add parametrization to test different max batch sizes and execution moes - rename `test_timer_precision` to `test_latency` - rename the test case file to `test_page_service_batching.py` - better descriptions of what the tests actually do ## On the holding The `TimelineHandle` in the pending batch While batching, we hold the `TimelineHandle` in the pending batch. Therefore, the timeline will not finish shutting down while we're batching. This is not a problem in practice because the concurrently ongoing `get_vectored` call will fail quickly with an error indicating that the timeline is shutting down. This results in the Execution stage returning a `QueryError::Shutdown`, which causes the pipeline / entire page service connection to shut down. This drops all references to the `Arc<Mutex<Option<Box<BatchedFeMessage>>>>` object, thereby dropping the contained `TimelineHandle`s. - => fixes #9850 # Performance Local run of the benchmarks, results in [this empty commit](1cf5b14) in the PR branch. Key take-aways: * `concurrent-futures` and `tasks` deliver identical `batching_factor` * tail latency impact unknown, cf #9837 * `concurrent-futures` has higher throughput than `tasks` in all workloads (=lower `time` metric) * In unbatchable workloads, `concurrent-futures` has 5% higher `CPU-per-throughput` than that of `tasks`, and 15% higher than that of `serial`. * In batchable-32 workload, `concurrent-futures` has 8% lower `CPU-per-throughput` than that of `tasks` (comparison to tput of `serial` is irrelevant) * in unbatchable workloads, mean and tail latencies of `concurrent-futures` is practically identical to `serial`, whereas `tasks` adds 20-30us of overhead Overall, `concurrent-futures` seems like a slightly more attractive choice. # Rollout This change is disabled-by-default. Rollout plan: - neondatabase/cloud#20620 # Refs - epic: #9376 - this sub-task: #9377 - the abandoned attempt to improve batching timeout resolution: #9820 - closes #9850 - fixes #9835
awarus
pushed a commit
that referenced
this pull request
Dec 5, 2024
# Problem The timeout-based batching adds latency to unbatchable workloads. We can choose a short batching timeout (e.g. 10us) but that requires high-resolution timers, which tokio doesn't have. I thoroughly explored options to use OS timers (see [this](#9822) abandoned PR). In short, it's not an attractive option because any timer implementation adds non-trivial overheads. # Solution The insight is that, in the steady state of a batchable workload, the time we spend in `get_vectored` will be hundreds of microseconds anyway. If we prepare the next batch concurrently to `get_vectored`, we will have a sizeable batch ready once `get_vectored` of the current batch is done and do not need an explicit timeout. This can be reasonably described as **pipelining of the protocol handler**. # Implementation We model the sub-protocol handler for pagestream requests (`handle_pagrequests`) as two futures that form a pipeline: 2. Batching: read requests from the connection and fill the current batch 3. Execution: `take` the current batch, execute it using `get_vectored`, and send the response. The Reading and Batching stage are connected through a new type of channel called `spsc_fold`. See the long comment in the `handle_pagerequests_pipelined` for details. # Changes - Refactor `handle_pagerequests` - separate functions for - reading one protocol message; produces a `BatchedFeMessage` with just one page request in it - batching; tried to merge an incoming `BatchedFeMessage` into an existing `BatchedFeMessage`; returns `None` on success and returns back the incoming message in case merging isn't possible - execution of a batched message - unify the timeline handle acquisition & request span construction; it now happen in the function that reads the protocol message - Implement serial and pipelined model - serial: what we had before any of the batching changes - read one protocol message - execute protocol messages - pipelined: the design described above - optionality for execution of the pipeline: either via concurrent futures vs tokio tasks - Pageserver config - remove batching timeout field - add ability to configure pipelining mode - add ability to limit max batch size for pipelined configurations (required for the rollout, cf neondatabase/cloud#20620 ) - ability to configure execution mode - Tests - remove `batch_timeout` parametrization - rename `test_getpage_merge_smoke` to `test_throughput` - add parametrization to test different max batch sizes and execution moes - rename `test_timer_precision` to `test_latency` - rename the test case file to `test_page_service_batching.py` - better descriptions of what the tests actually do ## On the holding The `TimelineHandle` in the pending batch While batching, we hold the `TimelineHandle` in the pending batch. Therefore, the timeline will not finish shutting down while we're batching. This is not a problem in practice because the concurrently ongoing `get_vectored` call will fail quickly with an error indicating that the timeline is shutting down. This results in the Execution stage returning a `QueryError::Shutdown`, which causes the pipeline / entire page service connection to shut down. This drops all references to the `Arc<Mutex<Option<Box<BatchedFeMessage>>>>` object, thereby dropping the contained `TimelineHandle`s. - => fixes #9850 # Performance Local run of the benchmarks, results in [this empty commit](1cf5b14) in the PR branch. Key take-aways: * `concurrent-futures` and `tasks` deliver identical `batching_factor` * tail latency impact unknown, cf #9837 * `concurrent-futures` has higher throughput than `tasks` in all workloads (=lower `time` metric) * In unbatchable workloads, `concurrent-futures` has 5% higher `CPU-per-throughput` than that of `tasks`, and 15% higher than that of `serial`. * In batchable-32 workload, `concurrent-futures` has 8% lower `CPU-per-throughput` than that of `tasks` (comparison to tput of `serial` is irrelevant) * in unbatchable workloads, mean and tail latencies of `concurrent-futures` is practically identical to `serial`, whereas `tasks` adds 20-30us of overhead Overall, `concurrent-futures` seems like a slightly more attractive choice. # Rollout This change is disabled-by-default. Rollout plan: - neondatabase/cloud#20620 # Refs - epic: #9376 - this sub-task: #9377 - the abandoned attempt to improve batching timeout resolution: #9820 - closes #9850 - fixes #9835
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR adds two benchmark to demonstrate the effect of server-side
getpage request batching added in #9321.
For the CPU usage, I found the the
prometheus
crate's built-in CPU usage accounts the seconds at integer granularity. That's not enough you reduce the target benchmark runtime for local iteration. So, add a newlibmetrics
metric and report that.The benchmarks are disabled because on our benchmark nodes, timer resolution isn't high enough.
They work (no statement about quality) on my bare-metal devbox.
They will be refined and enabled once we find a fix. Candidates at time of writing are:
Refs: