Skip to content

Experiment tracking for XGBoost. 🧩 Log, organize, visualize and compare machine learning model metrics, parameters, dataset versions, and more.

License

Notifications You must be signed in to change notification settings

neptune-ai/neptune-xgboost

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

80 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neptune + XGBoost integration

Experiment tracking for XGBoost-trained models.

What will you get with this integration?

  • Log, organize, visualize, and compare ML experiments in a single place
  • Monitor model training live
  • Version and query production-ready models and associated metadata (e.g., datasets)
  • Collaborate with the team and across the organization

What will be logged to Neptune?

  • metrics,
  • parameters,
  • learning rate,
  • pickled model,
  • visualizations (feature importance chart and tree visualizations),
  • hardware consumption (CPU, GPU, Memory),
  • stdout and stderr logs,
  • training code and Git commit information,
  • other metadata

image

Resources

Example

On the command line:

pip install xgboost>=1.3.0 neptune-xgboost

In Python:

import neptune
import xgboost as xgb
from neptune.integrations.xgboost import NeptuneCallback

# Start a run
run = neptune.init_run(
    project="common/xgboost-integration",
    api_token=neptune.ANONYMOUS_API_TOKEN,
)

# Create a NeptuneCallback instance
neptune_callback = NeptuneCallback(run=run, log_tree=[0, 1, 2, 3])

# Prepare datasets
...
data_train = xgb.DMatrix(X_train, label=y_train)

# Define model parameters
model_params = {
    "eta": 0.7,
    "gamma": 0.001,
    "max_depth": 9,
    ...
}

# Train the model and log metadata to the run in Neptune
xgb.train(
    params=model_params,
    dtrain=data_train,
    callbacks=[neptune_callback],
)

Support

If you got stuck or simply want to talk to us, here are your options:

  • Check our FAQ page
  • You can submit bug reports, feature requests, or contributions directly to the repository.
  • Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
  • You can just shoot us an email at support@neptune.ai

About

Experiment tracking for XGBoost. 🧩 Log, organize, visualize and compare machine learning model metrics, parameters, dataset versions, and more.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages