Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change act_scale -> input_scale #11

Merged
merged 2 commits into from
Jun 8, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ Each quantized layer in the state_dict will have:
If the config has `"activation_scheme": "static"`:
```
model.layers.0.mlp.down_proj.weight < F8_E4M3
model.layers.0.mlp.down_proj.act_scale < F32
model.layers.0.mlp.down_proj.input_scale < F32
mgoin marked this conversation as resolved.
Show resolved Hide resolved
model.layers.0.mlp.down_proj.weight_scale < F32
```
If config has `"activation_scheme": "dynamic"`:
Expand Down
2 changes: 1 addition & 1 deletion auto_fp8/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def _prepare_calibration_data(calibration_tokens):

# import copy
# for layer in self.model.model.layers:
# layer.self_attn.kv_scale = copy.deepcopy(layer.self_attn.k_proj.act_scale)
# layer.self_attn.kv_scale = copy.deepcopy(layer.self_attn.k_proj.input_scale)

def save_quantized(self, save_dir):
save_quantized_model(
Expand Down
24 changes: 12 additions & 12 deletions auto_fp8/quantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,18 +104,18 @@ def __init__(
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
self.act_scale = None
self.input_scale = None
self.bias = bias

def forward(self, x):
qinput, x_act_scale = per_tensor_quantize(x)
if self.act_scale is None:
self.act_scale = torch.nn.Parameter(x_act_scale)
elif x_act_scale > self.act_scale:
self.act_scale = torch.nn.Parameter(x_act_scale)
qinput, x_input_scale = per_tensor_quantize(x)
if self.input_scale is None:
self.input_scale = torch.nn.Parameter(x_input_scale)
elif x_input_scale > self.input_scale:
self.input_scale = torch.nn.Parameter(x_input_scale)
output = fp8_gemm(
A=qinput,
A_scale=self.act_scale,
A_scale=self.input_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=self.bias,
Expand All @@ -130,12 +130,12 @@ def __init__(
qweight: torch.Tensor,
weight_scale: torch.Tensor,
bias: torch.Tensor,
act_scale: float = 1.0,
input_scale: float = 1.0,
):
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
self.act_scale = torch.nn.Parameter(act_scale, requires_grad=False)
self.input_scale = torch.nn.Parameter(input_scale, requires_grad=False)
self.bias = bias

def per_tensor_quantize(
Expand All @@ -146,10 +146,10 @@ def per_tensor_quantize(
return qweight.to(torch.float8_e4m3fn)

def forward(self, x):
qinput = self.per_tensor_quantize(x, inv_scale=self.act_scale)
qinput = self.per_tensor_quantize(x, inv_scale=self.input_scale)
output = fp8_gemm(
A=qinput,
A_scale=self.act_scale,
A_scale=self.input_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=self.bias,
Expand Down Expand Up @@ -247,7 +247,7 @@ def quantize_activations(
quantizer.weight,
quantizer.weight_scale,
quantizer.bias,
quantizer.act_scale,
quantizer.input_scale,
)
replace_module(model, name, static_proj)
del quantizer
Expand Down
24 changes: 12 additions & 12 deletions examples/quantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,23 +85,23 @@ def __init__(self, qweight, weight_scale, bias):
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
self.act_scale = None
self.input_scale = None
self.bias = bias

def forward(self, x):
# Dynamically quantize
qinput, x_act_scale = per_tensor_quantize(x)
qinput, x_input_scale = per_tensor_quantize(x)

# Update scale if needed.
if self.act_scale is None:
self.act_scale = torch.nn.Parameter(x_act_scale)
elif x_act_scale > self.act_scale:
self.act_scale = torch.nn.Parameter(x_act_scale)
if self.input_scale is None:
self.input_scale = torch.nn.Parameter(x_input_scale)
elif x_input_scale > self.input_scale:
self.input_scale = torch.nn.Parameter(x_input_scale)

# Pass quantized to next layer so it has realistic data.
output = fp8_gemm(
A=qinput,
A_scale=self.act_scale,
A_scale=self.input_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=self.bias,
Expand All @@ -111,11 +111,11 @@ def forward(self, x):


class FP8StaticLinear(torch.nn.Module):
def __init__(self, qweight, weight_scale, bias, act_scale=0.0):
def __init__(self, qweight, weight_scale, bias, input_scale=0.0):
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
self.act_scale = torch.nn.Parameter(act_scale, requires_grad=False)
self.input_scale = torch.nn.Parameter(input_scale, requires_grad=False)
self.bias = bias

def per_tensor_quantize(
Expand All @@ -129,10 +129,10 @@ def per_tensor_quantize(
return qweight.to(torch.float8_e4m3fn)

def forward(self, x):
qinput = self.per_tensor_quantize(x, inv_scale=self.act_scale)
qinput = self.per_tensor_quantize(x, inv_scale=self.input_scale)
output = fp8_gemm(
A=qinput,
A_scale=self.act_scale,
A_scale=self.input_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=self.bias,
Expand Down Expand Up @@ -216,7 +216,7 @@ def quantize_activations(model, calibration_tokens):
quantizer.weight,
quantizer.weight_scale,
quantizer.bias,
quantizer.act_scale,
quantizer.input_scale,
)
replace_module(model, name, static_proj)
del quantizer
Expand Down
Loading