Cutset Networks have been introduced as weighted probabilistic model trees having tree-structured models as the leaves of an OR tree. They exploit context-specific independencies by embedding Pearl’s conditioning algorithm.
git clone --recursive https://github.com/nicoladimauro/cnet.git
cd cnet
cmake . -DCMAKE_BUILD_TYPE=Release
make
Usage: cnet [OPTIONS]...
-h, --help Print help and exit
-V, --version Print version and exit
--problem=STRING Input problem name
--min-inst=INT Minimum number of instances for a slice
(default=`500')
--min-feat=INT Minimum number of features for a slice
(default=`4')
--alpha=DOUBLE Pseudocounts for the smoothing (default=`1')
--output-dir=STRING Output dir path (default=`exp')
--model=STRING The model to use (possible values="cnet",
"xcnet", default=`cnet')
--leaf-distribution=STRING
Distribution for the leaf node (possible
values="cltree", "bernoulli",
"mix-bernoulli" default=`cltree')
--kbm=INT The number of ensemble components for bernoulli
mixture (default=`5')
--seed=INT Seed for the random generator (default=`117')
--verbose Verbosity flag (default=off)
./learncnet --problem=accidents --min-inst=300,500,1000,2000 --min-feat=4 --output-dir=exp/cnet --model=cnet --alpha=0.1,0.2,0.5,1.0,2.0
Usage: cnet [OPTIONS]...
-h, --help Print help and exit
-V, --version Print version and exit
--problem=STRING Input problem name
--min-inst=INT Minimum number of instances for a slice
(default=`500')
--min-feat=INT Minimum number of features for a slice
(default=`4')
--alpha=DOUBLE Pseudocounts for the smoothing (default=`1')
--output-dir=STRING Output dir path (default=`exp')
--model=STRING The model to use (possible values="cnet",
"xcnet", default=`cnet')
--ensemble Whether to build an ensemble model
(default=off)
--k=INT The number of ensemble components
(default=`5')
--leaf-distribution=STRING
Distribution for the leaf node (possible
values="cltree", "bernoulli",
"mix-bernoulli" default=`cltree')
--kbm=INT The number of ensemble components for bernoulli
mixture (default=`5')
--seed=INT Seed for the random generator (default=`117')
--verbose Verbosity flag (default=off)
./learnenscnet --problem=accidents --min-inst=300,500,1000,2000 --min-feat=4 --output-dir=exp/enscnet --model=cnet --alpha=0.1,0.2,0.5,1.0,2.0 --ensemble --k 40
The MIT License