This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #228 from jhlegarreta/AddGPPredictionPlotScript
ENH: Add a script to plot the signal estimated by the GP
- Loading branch information
Showing
4 changed files
with
457 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright The NiPreps Developers <nipreps@gmail.com> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
|
||
""" | ||
Plot the RMSE (mean and std dev) and prediction surface from the predicted DWI | ||
signal estimated using Gaussian processes k-fold cross-validation. | ||
""" | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import nibabel as nib | ||
import numpy as np | ||
import pandas as pd | ||
from dipy.core.gradients import gradient_table | ||
from dipy.io import read_bvals_bvecs | ||
|
||
from eddymotion.viz.signals import plot_error, plot_prediction_surface | ||
|
||
|
||
def _build_arg_parser() -> argparse.ArgumentParser: | ||
""" | ||
Build argument parser for command-line interface. | ||
Returns | ||
------- | ||
:obj:`~argparse.ArgumentParser` | ||
Argument parser for the script. | ||
""" | ||
parser = argparse.ArgumentParser( | ||
description=__doc__, formatter_class=argparse.RawTextHelpFormatter | ||
) | ||
parser.add_argument( | ||
"error_data_fname", | ||
help="Filename of TSV file containing the error data to plot", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"dwi_gt_data_fname", | ||
help="Filename of NIfTI file containing the ground truth DWI signal", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"bval_data_fname", | ||
help="Filename of b-val file containing the diffusion-encoding gradient b-vals", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"bvec_data_fname", | ||
help="Filename of b-vecs file containing the diffusion-encoding gradient b-vecs", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"dwi_pred_data_fname", | ||
help="Filename of NIfTI file containing the predicted DWI signal", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"error_plot_fname", | ||
help="Filename of SVG file where the error plot will be saved", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"signal_surface_plot_fname", | ||
help="Filename of SVG file where the predicted signal plot will be saved", | ||
type=Path, | ||
) | ||
return parser | ||
|
||
|
||
def _parse_args(parser: argparse.ArgumentParser) -> argparse.Namespace: | ||
""" | ||
Parse command-line arguments. | ||
Parameters | ||
---------- | ||
parser : :obj:`~argparse.ArgumentParser` | ||
Argument parser for the script. | ||
Returns | ||
------- | ||
:obj:`~argparse.Namespace` | ||
Parsed arguments. | ||
""" | ||
return parser.parse_args() | ||
|
||
|
||
def main() -> None: | ||
"""Main function for running the experiment and plotting the results.""" | ||
parser = _build_arg_parser() | ||
args = _parse_args(parser) | ||
|
||
df = pd.read_csv(args.error_data_fname, sep="\t", keep_default_na=False, na_values="n/a") | ||
|
||
# Plot the prediction error | ||
kfolds = sorted(np.unique(df["n_folds"].values)) | ||
snr = np.unique(df["snr"].values).item() | ||
rmse_data = [df.groupby("n_folds").get_group(k)["rmse"].values for k in kfolds] | ||
axis = 1 | ||
mean = np.mean(rmse_data, axis=axis) | ||
std_dev = np.std(rmse_data, axis=axis) | ||
xlabel = "k" | ||
ylabel = "RMSE" | ||
title = f"Gaussian process estimation\n(SNR={snr})" | ||
fig = plot_error(kfolds, mean, std_dev, xlabel, ylabel, title) | ||
fig.savefig(args.error_plot_fname) | ||
plt.close(fig) | ||
|
||
# Plot the predicted DWI signal at a single voxel | ||
|
||
# Load the dMRI data | ||
signal = nib.load(args.dwi_gt_data_fname).get_fdata() | ||
y_pred = nib.load(args.dwi_pred_data_fname).get_fdata() | ||
|
||
bvals, bvecs = read_bvals_bvecs(str(args.bval_data_fname), str(args.bvec_data_fname)) | ||
gtab = gradient_table(bvals, bvecs) | ||
|
||
# Pick one voxel randomly | ||
rng = np.random.default_rng(1234) | ||
idx = rng.integers(0, signal.shape[0], size=1).item() | ||
|
||
title = "GP model signal prediction" | ||
fig, _, _ = plot_prediction_surface( | ||
signal[idx, ~gtab.b0s_mask], | ||
y_pred[idx], | ||
signal[idx, gtab.b0s_mask].item(), | ||
gtab[~gtab.b0s_mask].bvecs, | ||
gtab[~gtab.b0s_mask].bvecs, | ||
title, | ||
"gray", | ||
) | ||
fig.savefig(args.signal_surface_plot_fname, format="svg") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.