Skip to content

Latest commit

 

History

History
35 lines (28 loc) · 1.44 KB

README.md

File metadata and controls

35 lines (28 loc) · 1.44 KB

1. PDEs Solver(Partial Differential Equations Solver)

The coverage of these problems is:

  • Wave equation using Finite-Difference method.

    $\frac{\partial^2 U(x,t)}{\partial t^2}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$

  • Heat equation using Forward-Difference method.

    $\frac{\partial U(x,t)}{\partial t}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$

  • Laplace's equation using Dirichlet method.

    $\frac{\partial^2 U(x,y)}{\partial x^2}+\frac{\partial^2 U(x,y)}{\partial y^2}=0$

  • Poisson's equation using Finite-Difference method.

    $\frac{\partial^2 U(x,y)}{\partial x^2}+\frac{\partial^2 U(x,y)}{\partial y^2}=F(x,y)$

This app build in Visual Studio 2017 CE.
Use libraries :

  1. mXparser(free version/NON-COMMERCIAL USE) by Mariusz Gromada as math expression parser.
  2. ProEssentials Gigasoft(free version/evaluating) for Viewing graph 3D.

2. Wave Equation

Wave equation using Finite-Difference method.

$\frac{\partial^2 U(x,t)}{\partial t^2}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$


This app build in Matlab 2016a(GUI version).

3. Wave Equation py

Wave equation using Finite-Difference method.

$\frac{\partial^2 U(x,t)}{\partial t^2}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$


This app build in PyCharm 2022 CE.
Use lib:
1. pymep as math parser to input math equation at runtime.
2. plotly as 3D(Surface) graph to display on browser.