Skip to content
/ PDEs Public

Solve Partial Differential Equations(PDEs) using Numerical methods.

License

Notifications You must be signed in to change notification settings

nix97/PDEs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1. PDEs Solver(Partial Differential Equations Solver)

The coverage of these problems is:

  • Wave equation using Finite-Difference method.

    $\frac{\partial^2 U(x,t)}{\partial t^2}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$

  • Heat equation using Forward-Difference method.

    $\frac{\partial U(x,t)}{\partial t}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$

  • Laplace's equation using Dirichlet method.

    $\frac{\partial^2 U(x,y)}{\partial x^2}+\frac{\partial^2 U(x,y)}{\partial y^2}=0$

  • Poisson's equation using Finite-Difference method.

    $\frac{\partial^2 U(x,y)}{\partial x^2}+\frac{\partial^2 U(x,y)}{\partial y^2}=F(x,y)$

This app build in Visual Studio 2017 CE.
Use libraries :

  1. mXparser(free version/NON-COMMERCIAL USE) by Mariusz Gromada as math expression parser.
  2. ProEssentials Gigasoft(free version/evaluating) for Viewing graph 3D.

2. Wave Equation

Wave equation using Finite-Difference method.

$\frac{\partial^2 U(x,t)}{\partial t^2}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$


This app build in Matlab 2016a(GUI version).

3. Wave Equation py

Wave equation using Finite-Difference method.

$\frac{\partial^2 U(x,t)}{\partial t^2}=c^2\frac{\partial^2 U(x,t)}{\partial x^2}$


This app build in PyCharm 2022 CE.
Use lib:
1. pymep as math parser to input math equation at runtime.
2. plotly as 3D(Surface) graph to display on browser.

About

Solve Partial Differential Equations(PDEs) using Numerical methods.

Resources

License

Stars

Watchers

Forks

Packages

No packages published