Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: enable to_radix for any field element #1343

Merged
merged 5 commits into from
May 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
x = "2040124"
_y = "0x2000000000000000000000000000000000000000000000000000000000000000"
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
use dep::std;

fn main(x : Field) {
fn main(x : Field, _y: Field) {
// The result of this byte array will be big-endian
let y: Field = 2040124;
let be_byte_array = y.to_be_bytes(31);
Expand All @@ -11,4 +11,17 @@ fn main(x : Field) {
assert(le_byte_array[0] == be_byte_array[30]);
assert(le_byte_array[1] == be_byte_array[29]);
assert(le_byte_array[2] == be_byte_array[28]);

let z = 0 - 1;
let p_bytes = std::field::modulus_le_bytes();
let z_bytes = z.to_le_bytes(32);
assert(p_bytes[10] == z_bytes[10]);
assert(p_bytes[0] == z_bytes[0] as u8 + 1 as u8);

let p_bits = std::field::modulus_le_bits();
let z_bits = z.to_le_bits(std::field::modulus_num_bits() as u32);
assert(z_bits[0] == 0);
assert(p_bits[100] == z_bits[100]);

_y.to_le_bits(std::field::modulus_num_bits() as u32);
}
99 changes: 85 additions & 14 deletions crates/noirc_evaluator/src/ssa/acir_gen/constraints.rs
Original file line number Diff line number Diff line change
Expand Up @@ -405,25 +405,43 @@ pub(crate) fn to_radix_base(
evaluator: &mut Evaluator,
) -> Vec<Witness> {
// ensure there is no overflow
let mut max = BigUint::from(radix);
max = max.pow(limb_size) - BigUint::one();
assert!(max < FieldElement::modulus());
let rad = BigUint::from(radix);
let max = rad.pow(limb_size) - BigUint::one();

let (mut result, bytes) = to_radix_little(radix, limb_size, evaluator);
if max < FieldElement::modulus() {
let (mut result, bytes) = to_radix_little(radix, limb_size, evaluator);

evaluator.push_opcode(AcirOpcode::Directive(Directive::ToLeRadix {
a: lhs.clone(),
b: result.clone(),
radix,
}));
evaluator.push_opcode(AcirOpcode::Directive(Directive::ToLeRadix {
a: lhs.clone(),
b: result.clone(),
radix,
}));

if endianness == Endian::Big {
result.reverse();
}
if endianness == Endian::Big {
result.reverse();
}

evaluator.push_opcode(AcirOpcode::Arithmetic(subtract(lhs, FieldElement::one(), &bytes)));
evaluator.push_opcode(AcirOpcode::Arithmetic(subtract(lhs, FieldElement::one(), &bytes)));
result
} else {
let min = rad.pow(limb_size - 1) - BigUint::one();
assert!(min < FieldElement::modulus());

let max_bits = max.bits() as u32;
let a = evaluate_constant_modulo(lhs, radix, max_bits, evaluator)
.to_witness()
.expect("Constant expressions should already be simplified");
let y = subtract(lhs, FieldElement::one(), &Expression::from(a));
let radix_f = FieldElement::from(radix as i128);
let y = Expression::default().add_mul(FieldElement::one() / radix_f, &y);
let mut b = to_radix_base(&y, radix, limb_size - 1, endianness, evaluator);
match endianness {
Endian::Little => b.insert(0, a),
Endian::Big => b.push(a),
}

result
b
}
}

//Decomposition into b-base: \sum ai b^i, where 0<=ai<b
Expand Down Expand Up @@ -527,6 +545,59 @@ pub(crate) fn evaluate_truncate(
Expression::from(b_witness)
}

//Returns b such that lhs (a number whose value requires max_bits) mod rhs is b
pub(crate) fn evaluate_constant_modulo(
lhs: &Expression,
rhs: u32,
max_bits: u32,
evaluator: &mut Evaluator,
) -> Expression {
let modulus = FieldElement::from(rhs as i128);
let modulus_exp = Expression::from_field(modulus);
assert_ne!(rhs, 0);
let modulus_bits = bit_size_u128((rhs - 1) as u128);
assert!(max_bits >= rhs, "max_bits = {max_bits}, rhs = {rhs}");
//0. Check for constant expression. This can happen through arithmetic simplifications
if let Some(a_c) = lhs.to_const() {
let mut a_big = BigUint::from_bytes_be(&a_c.to_be_bytes());
a_big %= BigUint::from_bytes_be(&modulus.to_be_bytes());
return Expression::from(FieldElement::from_be_bytes_reduce(&a_big.to_bytes_be()));
}

//1. Generate witnesses b,c
let b_witness = evaluator.add_witness_to_cs();
let c_witness = evaluator.add_witness_to_cs();
evaluator.push_opcode(AcirOpcode::Directive(Directive::Quotient {
a: lhs.clone(),
b: modulus_exp.clone(),
q: c_witness,
r: b_witness,
predicate: None,
}));
bound_constraint_with_offset(
&Expression::from(b_witness),
&modulus_exp,
&Expression::one(),
modulus_bits,
evaluator,
);
//if rhs is a power of 2, then we avoid this range check as it is redundant with the previous one.
if rhs & (rhs - 1) != 0 {
try_range_constraint(b_witness, modulus_bits, evaluator);
}
let c_bound = FieldElement::modulus() / BigUint::from(rhs) - BigUint::one();
try_range_constraint(c_witness, c_bound.bits() as u32, evaluator);

//2. Add the constraint lhs = b+q*rhs
let b_arith = b_witness.into();
let c_arith = c_witness.into();
let res = add(&b_arith, modulus, &c_arith);
let my_constraint = add(&res, -FieldElement::one(), lhs);
evaluator.push_opcode(AcirOpcode::Arithmetic(my_constraint));

Expression::from(b_witness)
}

pub(crate) fn evaluate_udiv(
lhs: &Expression,
rhs: &Expression,
Expand Down