Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(stdlib): correct tecurve::contains formula #1821

Merged
merged 3 commits into from
Aug 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions noir_stdlib/src/ec/montcurve.nr
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,12 @@ mod affine {

// Check if zero
fn is_zero(self) -> bool {
self.infty == true
self.infty
}

// Conversion to CurveGroup coordinates
fn into_group(self) -> curvegroup::Point {
if self.is_zero() == true {
if self.is_zero() {
curvegroup::Point::zero()
} else {
let (x,y) = (self.x, self.y);
Expand All @@ -70,7 +70,7 @@ mod affine {
fn into_tecurve(self) -> TEPoint {
let Self {x, y, infty} = self;

if (infty == true) | (y*(x+1) == 0) {
if infty | (y*(x+1) == 0) {
TEPoint::zero()
} else {
TEPoint::new(x/y, (x-1)/(x+1))
Expand Down Expand Up @@ -126,7 +126,7 @@ mod affine {
fn msm<N>(self, n: [Field; N], p: [Point; N]) -> Point {
let mut out = Point::zero();

for i in 0..n.len() {
for i in 0..N {
out = self.add(out, self.mul(n[i], p[i]));
}

Expand Down Expand Up @@ -156,7 +156,7 @@ mod affine {

// Point mapping into equivalent Short Weierstraß curve
fn map_into_swcurve(self, p: Point) -> SWPoint {
if p.is_zero() == true {
if p.is_zero() {
SWPoint::zero()
} else {
SWPoint::new((3*p.x + self.j)/(3*self.k),
Expand Down Expand Up @@ -191,9 +191,9 @@ mod affine {
let x2 = 0 - x1 - (j/k);
let gx2 = x2*x2*x2 + (j/k)*x2*x2 + x2/(k*k);

let x = if is_square(gx1) == true { x1 } else { x2 };
let x = if is_square(gx1) { x1 } else { x2 };

let y = if is_square(gx1) == true {
let y = if is_square(gx1) {
let y0 = sqrt(gx1);
if y0.sgn0() == 1 { y0 } else { 0 - y0 }
} else {
Expand Down Expand Up @@ -254,7 +254,7 @@ mod curvegroup {

// Conversion to affine coordinates
fn into_affine(self) -> affine::Point {
if self.is_zero() == true{
if self.is_zero() {
affine::Point::zero()
} else {
let (x,y,z) = (self.x, self.y, self.z);
Expand Down Expand Up @@ -328,7 +328,7 @@ mod curvegroup {
fn msm<N>(self, n: [Field; N], p: [Point; N]) -> Point {
let mut out = Point::zero();

for i in 0..n.len() {
for i in 0..N {
out = self.add(out, self.mul(n[i], p[i]));
}

Expand Down
17 changes: 8 additions & 9 deletions noir_stdlib/src/ec/swcurve.nr
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ mod affine {
fn into_group(self) -> curvegroup::Point {
let Self {x, y, infty} = self;

if infty == true {
if infty {
curvegroup::Point::zero()
} else {
curvegroup::Point::new(x, y, 1)
Expand All @@ -73,7 +73,7 @@ mod affine {
// Check curve coefficients
assert(4*a*a*a + 27*b*b != 0);

let curve = Curve { a, b, gen };
let curve = Curve { a, b, gen };

// gen should be on the curve
assert(curve.contains(curve.gen));
Expand Down Expand Up @@ -147,7 +147,7 @@ mod affine {
fn msm<N>(self, n: [Field; N], p: [Point; N]) -> Point {
let mut out = Point::zero();

for i in 0..n.len() {
for i in 0..N {
out = self.add(out, self.mul(n[i], p[i]));
}

Expand All @@ -173,7 +173,7 @@ mod affine {
let gx1 = x1*x1*x1 + a*x1 + b;
let x2 = z*u*u*x1;
let gx2 = x2*x2*x2 + a*x2 + b;
let (x,y) = if is_square(gx1) == true {(x1, sqrt(gx1))} else {(x2, sqrt(gx2))};
let (x,y) = if is_square(gx1) {(x1, sqrt(gx1))} else {(x2, sqrt(gx2))};
Point::new(x, if u.sgn0() != y.sgn0() {0-y} else {y})
}
}
Expand Down Expand Up @@ -250,7 +250,7 @@ mod curvegroup {
// Check curve coefficients
assert(4*a*a*a + 27*b*b != 0);

let curve = Curve { a, b, gen };
let curve = Curve { a, b, gen };

// gen should be on the curve
assert(curve.contains(curve.gen));
Expand Down Expand Up @@ -331,12 +331,11 @@ mod curvegroup {
// If k is the natural number represented by `bits`, then this computes p + ... + p k times.
fn bit_mul<N>(self, bits: [u1; N], p: Point) -> Point {
let mut out = Point::zero();
let n = bits.len();

for i in 0..n {
for i in 0..N {
out = self.add(
self.add(out, out),
if(bits[n - i - 1] == 0) {Point::zero()} else {p});
if(bits[N - i - 1] == 0) {Point::zero()} else {p});
}

out
Expand All @@ -360,7 +359,7 @@ mod curvegroup {
fn msm<N>(self, n: [Field; N], p: [Point; N]) -> Point {
let mut out = Point::zero();

for i in 0..n.len() {
for i in 0..N {
out = self.add(out, self.mul(n[i], p[i]));
}

Expand Down
45 changes: 13 additions & 32 deletions noir_stdlib/src/ec/tecurve.nr
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ mod affine {

// Map into prime-order subgroup of equivalent Montgomery curve
fn into_montcurve(self) -> MPoint {
if self.is_zero() == true {
if self.is_zero() {
MPoint::zero()
} else {
let Self {x, y} = self;
Expand All @@ -83,7 +83,7 @@ mod affine {
// Check curve coefficients
assert(a*d*(a-d) != 0);

let curve = Curve {a, d, gen};
let curve = Curve {a, d, gen};

// gen should be on the curve
assert(curve.contains(curve.gen));
Expand Down Expand Up @@ -145,7 +145,7 @@ mod affine {
fn msm<N>(self, n: [Field; N], p: [Point; N]) -> Point {
let mut out = Point::zero();

for i in 0..n.len() {
for i in 0..N {
out = self.add(out, self.mul(n[i], p[i]));
}

Expand Down Expand Up @@ -227,34 +227,16 @@ mod curvegroup {

// Check for equality
fn eq(self, p: Point) -> bool {
if self.is_zero() == true {
p.is_zero()
} else if p.is_zero() == true {
false
} else {
let Self {x: x1, y: y1, t: _t1, z: z1} = self;
let Self {x: x2, y: y2, t: _t2, z:z2} = p;

if x1*z2 == x2*z1 {
y1*z2 == y2*z1
} else {
false
}
}
let Self {x: x1, y: y1, t: _t1, z: z1} = self;
let Self {x: x2, y: y2, t: _t2, z:z2} = p;

(x1*z2 == x2*z1) & (y1*z2 == y2*z1)
shuklaayush marked this conversation as resolved.
Show resolved Hide resolved
}

// Check if zero
fn is_zero(self) -> bool {
let Self {x, y, t, z} = self;
if y == z {
if x == t {
x == 0
} else {
false
}
} else {
false
}
(x == 0) & (y == z) & (y != 0) & (t == 0)
}

// Conversion to affine coordinates
Expand Down Expand Up @@ -288,7 +270,7 @@ mod curvegroup {
// Check curve coefficients
assert(a*d*(a-d) != 0);

let curve = Curve { a, d, gen };
let curve = Curve { a, d, gen };

// gen should be on the curve
assert(curve.contains(curve.gen));
Expand All @@ -307,7 +289,7 @@ mod curvegroup {
fn contains(self, p: Point) -> bool {
let Point {x, y, t, z} = p;

(z != 0) & (z*t == x*y) & (z*z*(self.a*x*x + y*y) == z*z + self.d*x*x*y*y)
(z != 0) & (z*t == x*y) & (z*z*(self.a*x*x + y*y) == z*z*z*z + self.d*x*x*y*y)
}

// Point addition
Expand Down Expand Up @@ -357,12 +339,11 @@ mod curvegroup {
// If k is the natural number represented by `bits`, then this computes p + ... + p k times.
fn bit_mul<N>(self, bits: [u1; N], p: Point) -> Point {
let mut out = Point::zero();
let n = bits.len();

for i in 0..n {
for i in 0..N {
out = self.add(
self.add(out, out),
if(bits[n - i - 1] == 0) {Point::zero()} else {p});
if(bits[N - i - 1] == 0) {Point::zero()} else {p});
}

out
Expand All @@ -386,7 +367,7 @@ mod curvegroup {
fn msm<N>(self, n: [Field; N], p: [Point; N]) -> Point {
let mut out = Point::zero();

for i in 0..n.len() {
for i in 0..N {
out = self.add(out, self.mul(n[i], p[i]));
}

Expand Down