A python package for loading and converting images
Installation
pip install loadimg
Usage
from loadimg import load_img
load_img(any_img_type_here,output_type="pil",input_type="auto")
Supported types
- Currently supported input types - numpy, pillow, str(both path and url), base64, auto
- Currently supported output types - numpy, pillow, str, base64
The base64 is now compatible with most APIs, now supporting Hugging Face, OpenAI and FAL
from loadimg import load_img
from huggingface_hub import InferenceClient
# or load a local image
my_b64_img = load_img("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg", output_type="base64" )
client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Describe this image in one sentence."
},
{
"type": "image_url",
"image_url": {
"url": my_b64_img # base64 allows using images without uploading them to the web
}
}
]
}
]
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)
for chunk in stream:
print(chunk.choices[0].delta.content, end="")
- thanks to @KingNish24 for improving base64 support and adding the
input_type
parameter - thanks to @Saptarshi-Bandopadhyay for supporting base64 and improving the docstrings
- thanks to @Abbhiishek for improving image naming