-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #577 from reeserich/master
Added negative log-likelihood assignment function
- Loading branch information
Showing
1 changed file
with
150 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
""" | ||
Compare COVID-19 simulation outputs to data. | ||
Used for spatial - covidregion - model | ||
""" | ||
import argparse | ||
import os | ||
import pandas as pd | ||
import numpy as np | ||
import scipy.stats | ||
import sys | ||
|
||
sys.path.append('../') | ||
from load_paths import load_box_paths | ||
from datetime import date, timedelta, datetime | ||
from processing_helpers import * | ||
|
||
def parse_args(): | ||
|
||
description = "Simulation run for modeling Covid-19" | ||
parser = argparse.ArgumentParser(description=description) | ||
|
||
parser.add_argument( | ||
"-s", | ||
"--stem", | ||
type=str, | ||
help="Name of simulation experiment" | ||
) | ||
parser.add_argument( | ||
"-loc", | ||
"--Location", | ||
type=str, | ||
help="Local or NUCLUSTER", | ||
default = "Local" | ||
) | ||
parser.add_argument( | ||
"-t", "--trajectoriesName", | ||
type=str, | ||
help="Name of trajectoriesDat file, trajectoriesDat.csv or trajectoriesDat_trim.csv", | ||
default='trajectoriesDat.csv' | ||
) | ||
parser.add_argument( | ||
"--deaths_weight", | ||
type=float, | ||
help="Weight of deaths in negative log likelihood calculation. Default is 1.0.", | ||
default=1.0 | ||
) | ||
parser.add_argument( | ||
"--crit_weight", | ||
type=float, | ||
help="Weight of ICU population in negative log likelihood calculation. Default is 1.0.", | ||
default=1.0 | ||
) | ||
parser.add_argument( | ||
"--non_icu_weight", | ||
type=float, | ||
help="Weight of non-ICU population in negative log likelihood calculation. Default is 1.0.", | ||
default=1.0 | ||
) | ||
parser.add_argument( | ||
"--cli_weight", | ||
type=float, | ||
help="Weight of CLI admissions in negative log likelihood calculation. Default is 1.0.", | ||
default=1.0 | ||
) | ||
return parser.parse_args() | ||
|
||
def sum_nll(df_values, ref_df_values): | ||
try: | ||
x = -np.log10(scipy.stats.poisson(mu=df_values).pmf(k=ref_df_values)) | ||
except ValueError: | ||
print('ERROR: The simulation and reference arrays may not be the same length.') | ||
print('Length simulation: ' + str(len(df_values))) | ||
print('Length reference: ' + str(len(ref_df_values))) | ||
x[np.abs(x) == np.inf] = 0 | ||
return np.sum(x) | ||
|
||
def compare_sim_and_ref(df, ems_nr, ref_df, channels, data_channel_names, titles, region_label, | ||
first_day, last_day, ymax=10000, logscale=True, weights_array=[1.0,1.0,1.0,1.0]): | ||
|
||
[deaths_weight, crit_weight, non_icu_weight, cli_weight] = weights_array | ||
ref_df_trunc = ref_df[(ref_df['date'] > first_day) & (ref_df['date'] < last_day)] | ||
df_trunc = df[(df['date'] > first_day) & (df['date'] < last_day)] | ||
run_sample_scen_list = list(df_trunc.groupby(['run_num','sample_num','scen_num']).size().index) | ||
rank_export_df = pd.DataFrame({'run_num':[], 'sample_num':[], 'scen_num':[], 'nll':[]}) | ||
for x in run_sample_scen_list: | ||
total_nll = 0 | ||
(run_num, sample_num, scen_num) = x | ||
df_trunc_slice = df_trunc[(df_trunc['run_num'] == run_num) & (df_trunc['sample_num'] == sample_num) & (df_trunc['scen_num'] == scen_num)] | ||
total_nll += deaths_weight*sum_nll(df_trunc_slice['new_detected_deaths'].values, ref_df_trunc['deaths'].values) | ||
total_nll += crit_weight*sum_nll(df_trunc_slice['crit_det'].values, ref_df_trunc['confirmed_covid_icu'].values) | ||
total_nll += cli_weight*sum_nll(df_trunc_slice['new_detected_hospitalized'].values, ref_df_trunc['inpatient'].values) | ||
total_nll += non_icu_weight*sum_nll(df_trunc_slice['hosp_det'].values, ref_df_trunc['covid_non_icu'].values) | ||
rank_export_df = rank_export_df.append(pd.DataFrame({'run_num':[run_num], 'sample_num':[sample_num], 'scen_num':[scen_num], 'nll':[total_nll]})) | ||
rank_export_df['norm_rank'] = (rank_export_df['nll'].rank()-1)/(len(rank_export_df)-1) | ||
rank_export_df = rank_export_df.sort_values(by=['norm_rank']).reset_index(drop=True) | ||
rank_export_df.to_csv(os.path.join(output_path,'traces_ranked_region_' + str(ems_nr) + '.csv'), index=False) | ||
|
||
|
||
def compare_ems(exp_name,fname, ems_nr,first_day,last_day,weights_array): | ||
|
||
if ems_nr == 0: | ||
region_suffix = "_All" | ||
region_label = 'Illinois' | ||
else: | ||
region_suffix = "_EMS-" + str(ems_nr) | ||
region_label = region_suffix.replace('_EMS-', 'COVID-19 Region ') | ||
|
||
column_list = ['time', 'startdate', 'scen_num', 'sample_num','run_num'] | ||
outcome_channels = ['hosp_det_cumul', 'hosp_cumul', 'hosp_det', 'hospitalized', | ||
'crit_det_cumul', 'crit_cumul', 'crit_det', 'critical', | ||
'death_det_cumul', 'deaths'] | ||
|
||
for channel in outcome_channels: | ||
column_list.append(channel + region_suffix) | ||
|
||
df = load_sim_data(exp_name, region_suffix=region_suffix, fname=fname,column_list=column_list) | ||
df = df[(df['date'] >= first_day) & (df['date'] <= last_day)] | ||
df['critical_with_suspected'] = df['critical'] | ||
|
||
ref_df = load_ref_df(ems_nr) | ||
|
||
channels = ['new_detected_deaths', 'crit_det', 'hosp_det', 'new_deaths','new_detected_hospitalized', | ||
'new_detected_hospitalized'] | ||
data_channel_names = ['confirmed_covid_deaths_prev_24h', | ||
'confirmed_covid_icu', 'covid_non_icu', 'deaths','inpatient', 'admissions'] | ||
titles = ['New Detected\nDeaths (EMR)', 'Critical Detected (EMR)', 'Inpatient non-ICU\nCensus (EMR)', 'New Detected\nDeaths (LL)', | ||
'Covid-like illness\nadmissions (IDPH)', 'New Detected\nHospitalizations (LL)'] | ||
|
||
compare_sim_and_ref(df, ems_nr, ref_df, channels=channels, data_channel_names=data_channel_names, titles=titles, | ||
region_label=region_label,first_day= first_day, last_day= last_day, logscale=True, weights_array=weights_array) | ||
|
||
if __name__ == '__main__': | ||
|
||
args = parse_args() | ||
stem = args.stem | ||
trajectoriesName = args.trajectoriesName | ||
Location = args.Location | ||
weights_array = [args.deaths_weight, args.crit_weight, args.non_icu_weight, args.cli_weight] | ||
|
||
first_plot_day = date(2020, 3, 25) | ||
last_plot_day = date(2021, 1, 1) | ||
|
||
datapath, projectpath, wdir, exe_dir, git_dir = load_box_paths(Location=Location) | ||
|
||
exp_names = [x for x in os.listdir(os.path.join(wdir, 'simulation_output')) if stem in x] | ||
for exp_name in exp_names: | ||
output_path = os.path.join(wdir, 'simulation_output',exp_name) | ||
for ems_nr in range(0,12): | ||
print("Start processing region " + str(ems_nr)) | ||
compare_ems(exp_name,fname=trajectoriesName, ems_nr=int(ems_nr),first_day=first_plot_day,last_day=last_plot_day,weights_array=weights_array) |