Skip to content

Commit

Permalink
📝 add docs about skipper progressive delivery
Browse files Browse the repository at this point in the history
  • Loading branch information
dhohengassner committed Aug 13, 2020
1 parent 0ac7d91 commit 5839638
Show file tree
Hide file tree
Showing 2 changed files with 348 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ Flagger documentation can be found at [docs.flagger.app](https://docs.flagger.ap
* [Contour](https://docs.flagger.app/tutorials/contour-progressive-delivery)
* [Gloo](https://docs.flagger.app/tutorials/gloo-progressive-delivery)
* [NGINX Ingress](https://docs.flagger.app/tutorials/nginx-progressive-delivery)
* [Skipper](https://docs.flagger.app/tutorials/skipper-progressive-delivery)
* [Kubernetes Blue/Green](https://docs.flagger.app/tutorials/kubernetes-blue-green)

### Who is using Flagger
Expand Down
347 changes: 347 additions & 0 deletions docs/gitbook/tutorials/skipper-progressive-delivery.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,347 @@
# Skipper Canary Deployments

This guide shows you how to use the [Skipper ingress controller](https://opensource.zalando.com/skipper/kubernetes/ingress-controller/) and Flagger to automate canary deployments.

## Prerequisites

Flagger requires a Kubernetes cluster **v1.14** or newer and Skipper ingress **0.11.40** or newer.

Install Skipper ingress-controller using [upstream definition](https://opensource.zalando.com/skipper/kubernetes/ingress-controller/#install-skipper-as-ingress-controller).

## Bootstrap

Flagger takes a Kubernetes deployment and optionally a horizontal pod autoscaler (HPA),
then creates a series of objects (Kubernetes deployments, ClusterIP services and canary ingress).
These objects expose the application outside the cluster and drive the canary analysis and promotion.

Create a test namespace:

```bash
kubectl create ns test
```

Create a deployment and a horizontal pod autoscaler:

```bash
kubectl apply -k github.com/weaveworks/flagger//kustomize/podinfo
```

Deploy the load testing service to generate traffic during the canary analysis:

```bash
helm upgrade -i flagger-loadtester flagger/loadtester \
--namespace=test
```

Create an ingress definition \(replace `app.example.com` with your own domain\):

```yaml
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
name: podinfo
namespace: test
labels:
app: podinfo
annotations:
kubernetes.io/ingress.class: "skipper"
spec:
rules:
- host: app.example.com
http:
paths:
- backend:
serviceName: podinfo
servicePort: 80
```
Save the above resource as podinfo-ingress.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-ingress.yaml
```

Create a canary custom resource \(replace `app.example.com` with your own domain\):

```yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
provider: skipper
# deployment reference
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
# ingress reference
ingressRef:
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
name: podinfo
# HPA reference (optional)
autoscalerRef:
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
name: podinfo
# the maximum time in seconds for the canary deployment
# to make progress before it is rollback (default 600s)
progressDeadlineSeconds: 60
service:
# ClusterIP port number
port: 80
# container port number or name
targetPort: 9898
analysis:
# schedule interval (default 60s)
interval: 10s
# max number of failed metric checks before rollback
threshold: 10
# max traffic percentage routed to canary
# percentage (0-100)
maxWeight: 50
# canary increment step
# percentage (0-100)
stepWeight: 5
# NGINX Prometheus checks
metrics:
- name: request-success-rate
interval: 1m
# minimum req success rate (non 5xx responses)
# percentage (0-100)
thresholdRange:
min: 99
- name: request-duration
interval: 1m
# maximum req duration P99
# milliseconds
thresholdRange:
max: 500
webhooks:
- name: gate
type: confirm-rollout
url: http://flagger-loadtester.test/gate/approve
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 10s
metadata:
type: bash
cmd: "curl -sd 'test' http://podinfo-canary/token | grep token"
- name: "load test"
type: rollout
url: http://flagger-loadtester.test/
timeout: 5s
metadata:
type: cmd
cmd: "hey -z 10m -q 10 -c 2 -host app.example.com http://skipper-ingress.kube-system"
logCmdOutput: "true"
```
Save the above resource as podinfo-canary.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-canary.yaml
```

After a couple of seconds Flagger will create the canary objects:

```bash
# applied
deployment.apps/podinfo
horizontalpodautoscaler.autoscaling/podinfo
ingresses.extensions/podinfo
canary.flagger.app/podinfo

# generated
deployment.apps/podinfo-primary
horizontalpodautoscaler.autoscaling/podinfo-primary
service/podinfo
service/podinfo-canary
service/podinfo-primary
ingresses.extensions/podinfo-canary
```

## Automated canary promotion

Flagger implements a control loop that gradually shifts traffic to the canary while measuring
key performance indicators like HTTP requests success rate, requests average duration and pod health.
Based on analysis of the KPIs a canary is promoted or aborted, and the analysis result is published to Slack or MS Teams.

![Flagger Canary Stages](https://raw.githubusercontent.com/weaveworks/flagger/master/docs/diagrams/flagger-canary-steps.png)

Trigger a canary deployment by updating the container image:

```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.1
```

Flagger detects that the deployment revision changed and starts a new rollout:

```text
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 0
Phase: Succeeded
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Synced 3m flagger New revision detected podinfo.test
Normal Synced 3m flagger Scaling up podinfo.test
Warning Synced 3m flagger Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
Normal Synced 3m flagger Advance podinfo.test canary weight 5
Normal Synced 3m flagger Advance podinfo.test canary weight 10
Normal Synced 3m flagger Advance podinfo.test canary weight 15
Normal Synced 2m flagger Advance podinfo.test canary weight 20
Normal Synced 2m flagger Advance podinfo.test canary weight 25
Normal Synced 1m flagger Advance podinfo.test canary weight 30
Normal Synced 1m flagger Advance podinfo.test canary weight 35
Normal Synced 55s flagger Advance podinfo.test canary weight 40
Normal Synced 45s flagger Advance podinfo.test canary weight 45
Normal Synced 35s flagger Advance podinfo.test canary weight 50
Normal Synced 25s flagger Copying podinfo.test template spec to podinfo-primary.test
Warning Synced 15s flagger Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Normal Synced 5s flagger Promotion completed! Scaling down podinfo.test
```

**Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis.

You can monitor all canaries with:

```bash
watch kubectl get canaries --all-namespaces

NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
test podinfo Progressing 15 2019-05-06T14:05:07Z
prod frontend Succeeded 0 2019-05-05T16:15:07Z
prod backend Failed 0 2019-05-04T17:05:07Z
```

## Automated rollback

During the canary analysis you can generate HTTP 500 errors to test if Flagger pauses and rolls back the faulted version.

Trigger another canary deployment:

```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.2
```

Generate HTTP 500 errors:

```bash
watch curl http://app.example.com/status/500
```

When the number of failed checks reaches the canary analysis threshold, the traffic is routed back to the primary,
the canary is scaled to zero and the rollout is marked as failed.

```text
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 10
Phase: Failed
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Synced 3m flagger Starting canary deployment for podinfo.test
Normal Synced 3m flagger Advance podinfo.test canary weight 5
Normal Synced 3m flagger Advance podinfo.test canary weight 10
Normal Synced 3m flagger Advance podinfo.test canary weight 15
Normal Synced 3m flagger Halt podinfo.test advancement success rate 69.17% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 61.39% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 55.06% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 47.00% < 99%
Normal Synced 2m flagger (combined from similar events): Halt podinfo.test advancement success rate 38.08% < 99%
Warning Synced 1m flagger Rolling back podinfo.test failed checks threshold reached 10
Warning Synced 1m flagger Canary failed! Scaling down podinfo.test
```

## Custom metrics

The canary analysis can be extended with Prometheus queries.

The demo app is instrumented with Prometheus so you can create a custom check that will use the
HTTP request duration histogram to validate the canary.

Create a metric template and apply it on the cluster:

```yaml
apiVersion: flagger.app/v1beta1
kind: MetricTemplate
metadata:
name: latency
namespace: test
spec:
provider:
type: prometheus
address: http://flagger-prometheus.ingress-nginx:9090
query: |
histogram_quantile(0.99,
sum(
rate(
http_request_duration_seconds_bucket{
kubernetes_namespace="{{ namespace }}",
kubernetes_pod_name=~"{{ target }}-[0-9a-zA-Z]+(-[0-9a-zA-Z]+)"
}[1m]
)
) by (le)
)
```
Edit the canary analysis and add the latency check:
```yaml
analysis:
metrics:
- name: "latency"
templateRef:
name: latency
thresholdRange:
max: 0.5
interval: 1m
```
The threshold is set to 500ms so if the average request duration in the last minute goes over half a second
then the analysis will fail and the canary will not be promoted.
Trigger a canary deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.3
```

Generate high response latency:

```bash
watch curl http://app.exmaple.com/delay/2
```

Watch Flagger logs:

```text
kubectl -n nginx-ingress logs deployment/flagger -f | jq .msg
Starting canary deployment for podinfo.test
Advance podinfo.test canary weight 5
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 15
Halt podinfo.test advancement latency 1.20 > 0.5
Halt podinfo.test advancement latency 1.45 > 0.5
Halt podinfo.test advancement latency 1.60 > 0.5
Halt podinfo.test advancement latency 1.69 > 0.5
Halt podinfo.test advancement latency 1.70 > 0.5
Rolling back podinfo.test failed checks threshold reached 5
Canary failed! Scaling down podinfo.test
```

If you have alerting configured, Flagger will send a notification with the reason why the canary failed.

0 comments on commit 5839638

Please sign in to comment.