Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed issue #53 #55

Merged
merged 12 commits into from
Aug 20, 2024
2 changes: 1 addition & 1 deletion .github/workflows/lint.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ jobs:
env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4

- uses: r-lib/actions/setup-r@v2
with:
Expand Down
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: MADMMplasso
Title: Multi Variate Multi Response 'ADMM' with Interaction Effects
Version: 0.0.0.9021
Version: 0.0.0.9022
Authors@R:
c(
person(
Expand Down
34 changes: 19 additions & 15 deletions R/MADMMplasso.R
Original file line number Diff line number Diff line change
Expand Up @@ -50,9 +50,19 @@
#' @export
MADMMplasso <- function(X, Z, y, alpha, my_lambda = NULL, lambda_min = 0.001, max_it = 50000, e.abs = 1E-3, e.rel = 1E-3, maxgrid, nlambda, rho = 5, my_print = FALSE, alph = 1.8, tree, pal = cl == 1L, gg = NULL, tol = 1E-4, cl = 1L, legacy = FALSE) {
# Recalculating the number of CPUs
cl <- ifelse(pal, 1L, cl) # cl is irrelevant if pal = TRUE
if (pal && cl > 1L) {
cl <- 1L
warning("pal is TRUE, resetting cl to 1")
}
parallel <- cl > 1L

if (my_print) {
message(
"Parallelization is ", ifelse(parallel, "enabled ", "disabled "),
"(", cl, " CPUs)"
)
message("pal is ", ifelse(pal, "TRUE", "FALSE"))
message("Using ", ifelse(legacy, "R", "C++"), " engine")
}
N <- nrow(X)

p <- ncol(X)
Expand Down Expand Up @@ -204,19 +214,23 @@ MADMMplasso <- function(X, Z, y, alpha, my_lambda = NULL, lambda_min = 0.001, ma

# Pre-calculating my_values through my_values_matrix
if (parallel) {
cl <- makeCluster(cl1, type = "FORK")
if (.Platform$OS.type == "unix") {
cl <- parallel::makeForkCluster(cl1)
} else {
cl <- parallel::makeCluster(cl1)
}
doParallel::registerDoParallel(cl = cl)
foreach::getDoParRegistered()
if (legacy) {
my_values_matrix <- foreach(i = 1:nlambda, .packages = "MADMMplasso", .combine = rbind) %dopar% {
my_values <- foreach(i = 1:nlambda) %dopar% {
admm_MADMMplasso(
beta0, theta0, beta, beta_hat, theta, rho1, X, Z, max_it, my_W_hat, XtY,
y, N, e.abs, e.rel, alpha, lam[i, ], alph, svd.w, tree, my_print,
invmat, gg[i, ]
)
}
} else {
my_values_matrix <- foreach(i = 1:nlambda, .packages = "MADMMplasso", .combine = rbind) %dopar% {
my_values <- foreach(i = 1:nlambda) %dopar% {
admm_MADMMplasso_cpp(
beta0, theta0, beta, beta_hat, theta, rho1, X, Z, max_it, my_W_hat, XtY,
y, N, e.abs, e.rel, alpha, lam[i, ], alph, svd_w_tu, svd_w_tv, svd_w_d,
Expand All @@ -225,16 +239,6 @@ MADMMplasso <- function(X, Z, y, alpha, my_lambda = NULL, lambda_min = 0.001, ma
}
}
parallel::stopCluster(cl)

# Converting to list so hh_nlambda_loop_cpp can handle it
if (nlambda == 1) {
my_values <- list(my_values_matrix)
} else {
my_values <- list()
for (hh in seq_len(nlambda)) {
my_values[[hh]] <- my_values_matrix[hh, ]
}
}
} else if (!parallel && !pal) {
if (legacy) {
my_values <- lapply(
Expand Down
4 changes: 2 additions & 2 deletions tests/testthat/test-MADMMplasso.R
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ fit_C <- MADMMplasso(
alpha = alpha, my_lambda = matrix(rep(0.2, ncol(y)), 1),
lambda_min = 0.001, max_it = 5000, e.abs = e.abs, e.rel = e.rel, maxgrid = nlambda,
nlambda = nlambda, rho = 5, tree = TT, my_print = FALSE, alph = 1,
pal = TRUE, gg = gg1, tol = tol, cl = 6
pal = TRUE, gg = gg1, tol = tol, cl = 1
)
set.seed(9356219)
fit_R <- suppressWarnings(
Expand All @@ -95,7 +95,7 @@ fit_R <- suppressWarnings(
alpha = alpha, my_lambda = matrix(rep(0.2, ncol(y)), 1),
lambda_min = 0.001, max_it = 5000, e.abs = e.abs, e.rel = e.rel, maxgrid = nlambda,
nlambda = nlambda, rho = 5, tree = TT, my_print = FALSE, alph = 1,
pal = TRUE, gg = gg1, tol = tol, cl = 6, legacy = TRUE
pal = TRUE, gg = gg1, tol = tol, cl = 1, legacy = TRUE
)
)
)
Expand Down
120 changes: 120 additions & 0 deletions tests/testthat/test-issue_53.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Install and load the package, set the seed
set.seed(1235)

# Generate the data
N <- 100
p <- 50
nz <- 4
K <- nz
X <- matrix(rnorm(n = N * p), nrow = N, ncol = p)
mx <- colMeans(X)
sx <- sqrt(apply(X, 2, var))
X <- scale(X, mx, sx)
X <- matrix(as.numeric(X), N, p)
Z <- matrix(rnorm(N * nz), N, nz)
mz <- colMeans(Z)
sz <- sqrt(apply(Z, 2, var))
Z <- scale(Z, mz, sz)
beta_1 <- rep(x = 0, times = p)
beta_2 <- rep(x = 0, times = p)
beta_3 <- rep(x = 0, times = p)
beta_4 <- rep(x = 0, times = p)
beta_5 <- rep(x = 0, times = p)
beta_6 <- rep(x = 0, times = p)

beta_1[1:5] <- c(2, 2, 2, 2, 2)
beta_2[1:5] <- c(2, 2, 2, 2, 2)
beta_3[6:10] <- c(2, 2, 2, -2, -2)
beta_4[6:10] <- c(2, 2, 2, -2, -2)
beta_5[11:15] <- c(-2, -2, -2, -2, -2)
beta_6[11:15] <- c(-2, -2, -2, -2, -2)

Beta <- cbind(beta_1, beta_2, beta_3, beta_4, beta_5, beta_6)

colnames(Beta) <- 1:6

theta <- array(0, c(p, K, 6))
theta[1, 1, 1] <- 2
theta[3, 2, 1] <- 2
theta[4, 3, 1] <- -2
theta[5, 4, 1] <- -2
theta[1, 1, 2] <- 2
theta[3, 2, 2] <- 2
theta[4, 3, 2] <- -2
theta[5, 4, 2] <- -2
theta[6, 1, 3] <- 2
theta[8, 2, 3] <- 2
theta[9, 3, 3] <- -2
theta[10, 4, 3] <- -2
theta[6, 1, 4] <- 2
theta[8, 2, 4] <- 2
theta[9, 3, 4] <- -2
theta[10, 4, 4] <- -2
theta[11, 1, 5] <- 2
theta[13, 2, 5] <- 2
theta[14, 3, 5] <- -2
theta[15, 4, 5] <- -2
theta[11, 1, 6] <- 2
theta[13, 2, 6] <- 2
theta[14, 3, 6] <- -2
theta[15, 4, 6] <- -2

pliable <- matrix(0, N, 6)
for (e in 1:6) {
pliable[, e] <- compute_pliable(X, Z, theta[, , e])
}
esd <- diag(6)
e <- MASS::mvrnorm(N, mu = rep(0, 6), Sigma = esd)
y_train <- X %*% Beta + pliable + e
y <- y_train
colnames(y) <- paste0("y", seq_len(ncol(y)))
TT <- tree_parms(y)

gg1 <- matrix(0, 2, 2)
gg1[1, ] <- c(0.02, 0.02)
gg1[2, ] <- c(0.2, 0.2)
nlambda <- 2
e.abs <- 1E-4
e.rel <- 1E-2
alpha <- 0.5
tol <- 1E-3
# Fitting models
set.seed(1235)
fit_C <- MADMMplasso(
X, Z, y,
alpha = alpha, my_lambda = NULL,
lambda_min = 0.001, max_it = 5000, e.abs = e.abs, e.rel = e.rel, maxgrid = nlambda,
nlambda = nlambda, rho = 5, tree = TT, my_print = FALSE, alph = 1,
pal = FALSE, gg = gg1, tol = tol, legacy = FALSE, cl = 2L
)

set.seed(1235)
fit_R <- MADMMplasso(
X, Z, y,
alpha = alpha, my_lambda = NULL,
lambda_min = 0.001, max_it = 5000, e.abs = e.abs, e.rel = e.rel, maxgrid = nlambda,
nlambda = nlambda, rho = 5, tree = TT, my_print = FALSE, alph = 1,
pal = FALSE, gg = gg1, tol = tol, legacy = TRUE, cl = 2L
)

test_that("C++ and R versions basically output the same thing", {
expect_named(fit_C$beta, names(fit_R$beta))
tl <- 1e1
expect_equal(fit_C$beta0[[1]], as.matrix(fit_R$beta0[[1]]), tolerance = tl)
expect_equal(as.vector(fit_C$beta[[1]]), as.vector(fit_R$beta[[1]]), tolerance = tl)
expect_equal(as.vector(fit_C$BETA_hat[[1]]), as.vector(fit_R$BETA_hat[[1]]), tolerance = tl)
expect_equal(fit_C$theta0[[1]], fit_R$theta0[[1]], tolerance = tl)
for (i in 1:6) {
expect_equal(
as.vector(fit_C$theta[[1]][, , i]),
as.vector(fit_R$theta[[1]][, , i]),
tolerance = tl
)
}
expect_equal(fit_C$path, fit_R$path, tolerance = tl)
expect_identical(fit_C$Lambdas, fit_R$Lambdas)
expect_equal(fit_C$non_zero, as.matrix(fit_R$non_zero), tolerance = tl)
expect_equal(fit_C$LOSS, as.matrix(fit_R$LOSS), tolerance = tl)
expect_equal(fit_C$Y_HAT[[1]], fit_R$Y_HAT[[1]], tolerance = tl)
expect_identical(fit_C$gg, fit_R$gg)
})