This code implements the state-of-the-art system for dense 3D reconstruction of outdoor environments described in the CVPR 2019 workshop paper Live Reconstruction of Large-Scale Dynamic Outdoor Worlds by Ondrej Miksik and Vibhav Vineet.
@inproceedings{miksik2019cvprw,
author = {Ondrej Miksik and Vibhav Vineet},
title = {{L}ive {R}econstruction of {L}arge-{S}cale {D}ynamic {O}utdoor {W}orlds},
booktitle = {{CVPR} {W}orkshop on {D}ynamic {S}cene {R}econstruction},
year = {2019}
}
For any questions about the code or the paper, feel free to contact us. More info can be found on the project page: http://www.miksik.co.uk/projects/dfusion/dfusion.html
This project is written in Python 3 and requires Open3D
and standard packages like Matplotlib
Pandas
or NumPy
.
We mostly use virtual kitti
format, see examples in data
folder and details in the paper.
python main.py --dataset kitti_0003 --d 0 --r --c --f
Optional parameters:
-
--start 10
- reconstruction will start from 10th frame -
--limit_frames 20
- will reconstruct only 20 frames -
--no-c
- object instances will not be colour coded -
--o
- enables on-the-fly output (storing of depth data could be enabled inmain.py
) -
--out_dir
- sets output directory
More details can be found in main.py
and by using
python main.py --help
Surface normals can be visualised by editing renderoptions.json
Remove --d 0
from command above:
python main.py --dataset kitti_0003 --r --c --f
Inspect (trajetory-ID colour coded) 2D bboxes
python main.py --dataset kitti_0003 --show_2Dbboxes
Similarly, we can inspect 3D bboxes using --show_3Dbboxes
or combine both arguments.
====
Note this is an un-optimised research code which should be cleaned up at some point (pull requests welcomed!)