Skip to content

Commit

Permalink
21.03 release (#653)
Browse files Browse the repository at this point in the history
* ONNX opset13 importer updates

Signed-off-by: Rajeev Rao <rajeevrao@nvidia.com>

* Eyelike Operator Support

Signed-off-by: Rajeev Rao <rajeevrao@nvidia.com>

* GatherElements Operator Support

Signed-off-by: Rajeev Rao <rajeevrao@nvidia.com>

* Update 21.03 release date

Signed-off-by: Rajeev Rao <rajeevrao@nvidia.com>

Co-authored-by: John Yang <johny@nvidia.com>
  • Loading branch information
rajeevsrao and John Yang authored Mar 10, 2021
1 parent dc22bb3 commit cb2ae79
Show file tree
Hide file tree
Showing 7 changed files with 437 additions and 217 deletions.
265 changes: 214 additions & 51 deletions builtin_op_importers.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1119,6 +1119,54 @@ DEFINE_BUILTIN_OP_IMPORTER(Expand)
RETURN_FIRST_OUTPUT(sliceLayer);
}

DEFINE_BUILTIN_OP_IMPORTER(EyeLike)
{
// Get input node.
nvinfer1::ITensor& tensor = convertToTensor(inputs.at(0), ctx);
OnnxAttrs attrs(node, ctx);
int k = attrs.get("k", 0);

// "Only 2D tensors are supported, i.e. input T1 must be of rank 2..."
nvinfer1::Dims dims = tensor.getDimensions();
ASSERT(dims.nbDims == 2 && "Only 2D tensors are supported. Input must be of rank 2.", ErrorCode::kUNSUPPORTED_NODE);

// The data type can be specified by the 'dtype' argument
nvinfer1::DataType dtype = tensor.getType();
if (attrs.count("dtype"))
{
auto onnxType = attrs.get<int32_t>("dtype");
ASSERT(convertDtype(onnxType, &dtype) && "Unsupported cast!", ErrorCode::kINVALID_NODE);
LOG_VERBOSE("Casting to type: " << dtype);
}

// Create weights and constant layer
ASSERT(!isDynamic(dims) && "Eyelike does not work for dynamically shaped tensors.", ErrorCode::kUNSUPPORTED_NODE);
int totalWeights = dims.d[0]*dims.d[1];
std::vector<int> values(totalWeights);
for (int r = 0; r < dims.d[0]; ++r)
{
for (int c = 0; c < dims.d[1]; ++c)
{
values[r*dims.d[1] + c] = 0;
if (c - r == k)
{
values[r*dims.d[1] + c] = 1;
}
}
}

ShapedWeights tempWeights = ctx->createTempWeights(::ONNX_NAMESPACE::TensorProto::INT32, dims);
std::memcpy(tempWeights.values, values.data(), values.size() * sizeof(int));
auto* layer = ctx->network()->addConstant(dims, tempWeights);
layer->setOutputType(0, nvinfer1::DataType::kINT32);
ctx->registerLayer(layer, node.name());

if (dtype != nvinfer1::DataType::kINT32) {
return {{castHelper(ctx, layer->getOutput(0), dtype)}};
}
return {{layer->getOutput(0)}};
}

DEFINE_BUILTIN_OP_IMPORTER(Flatten)
{
OnnxAttrs attrs(node, ctx);
Expand Down Expand Up @@ -1156,6 +1204,92 @@ DEFINE_BUILTIN_OP_IMPORTER(Gather)
RETURN_FIRST_OUTPUT(layer);
}

DEFINE_BUILTIN_OP_IMPORTER(GatherElements)
{
nvinfer1::ITensor& data = convertToTensor(inputs.at(0), ctx);
nvinfer1::ITensor& index = convertToTensor(inputs.at(1), ctx);

const nvinfer1::Dims& idxDims = index.getDimensions();
const nvinfer1::Dims& dataDims = data.getDimensions();

OnnxAttrs attrs(node, ctx);
int32_t axis = attrs.get<int32_t>("axis", 0);
int32_t dataNbDims = dataDims.nbDims;

TRT_CHECK(convertAxis(axis, dataNbDims));
LOG_VERBOSE("Using Gather axis: " << axis);

// Calculate how many indices
int64_t nIndx = volume(idxDims);

// Calculate pitches of input tensor
int32_t nDataElements = volume(dataDims), pitch = 1;
int32_t pitches[nvinfer1::Dims::MAX_DIMS] = {0};
pitches[dataDims.nbDims-1] = pitch;
for (int32_t i = dataDims.nbDims-2; i >= 0 ; i--)
{
pitch *= dataDims.d[i];
pitches[i] = pitch;
}

// Generate constants based on axis
std::vector<int32_t> sCoeff(nIndx, pitches[axis]);
std::vector<int32_t> aCoeff;

// Transform a 1-d index back to the nDims
for (int32_t i = 0; i < nIndx; i++)
{
std::vector<int32_t> nDimsIdx; //this can be an array
int32_t currI = i;

for (int32_t j = 0; j < dataDims.nbDims; j++)
{
int32_t currIdxVal = currI / pitches[j];
nDimsIdx.push_back(currIdxVal);
currI = currI % pitches[j];
}

int32_t bias = 0;
//calculate the aCoeff
for (size_t j = 0; j < nDimsIdx.size(); j++)
{

if (j == (size_t)axis)
{
continue;
}
bias += nDimsIdx[j] * pitches[j];
}
aCoeff.push_back(bias);
}

auto* sCoeffLayer = addConstant(ctx, sCoeff, ::ONNX_NAMESPACE::TensorProto::INT32, idxDims);
auto* aCoeffLayer = addConstant(ctx, aCoeff, ::ONNX_NAMESPACE::TensorProto::INT32, idxDims);

nvinfer1::ITensor* sCoeffTensor = sCoeffLayer->getOutput(0);
nvinfer1::ITensor* aCoeffTensor = aCoeffLayer->getOutput(0);
auto* mul = ctx->network()->addElementWise(index, *sCoeffTensor, nvinfer1::ElementWiseOperation::kPROD);

nvinfer1::ITensor* mulTensor = mul->getOutput(0);
auto* add = ctx->network()->addElementWise(*mulTensor, *aCoeffTensor, nvinfer1::ElementWiseOperation::kSUM);

nvinfer1::ITensor* addTensor = add->getOutput(0);

nvinfer1::Dims flattenDataDims{1};

flattenDataDims.nbDims = 1;
flattenDataDims.d[0] = nDataElements;
auto* reshape = ctx->network()->addShuffle(data);
reshape->setReshapeDimensions(flattenDataDims);
reshape->setZeroIsPlaceholder(false);

nvinfer1::ITensor* flattenData = reshape->getOutput(0);
auto* layer = ctx->network()->addGather(*flattenData, *addTensor, 0);
ctx->registerLayer(layer, getNodeName(node));
RETURN_FIRST_OUTPUT(layer);
}


DEFINE_BUILTIN_OP_IMPORTER(Gemm)
{
OnnxAttrs attrs(node, ctx);
Expand Down Expand Up @@ -1859,30 +1993,13 @@ DEFINE_BUILTIN_OP_IMPORTER(Log)

DEFINE_BUILTIN_OP_IMPORTER(LogSoftmax)
{
auto& input = convertToTensor(inputs.at(0), ctx);
// Don't use softmax converter since it adds a shuffle layer
// which prevents the builder to fuse softmax and log operations.

OnnxAttrs attrs(node, ctx);
// "input : T"
nvinfer1::ITensor& input = convertToTensor(inputs.at(0), ctx);
const auto dims = shapeOf(input);
// "axis : int (default is 1)"
int axis = attrs.get("axis", 1);

// "Negative value means counting dimensions from the back.
// Accepted range is [-r, r-1] where r = rank(input)."
TRT_CHECK(convertAxis(axis, dims.size()));

// "The input does not need to explicitly be a 2D vector; rather, it will be coerced into one."
auto* flattened = flattenTensor(ctx, node, input, axis);
auto* softMax = ctx->network()->addSoftMax(*flattened);
ctx->registerLayer(softMax, node.name());
// ONNX softmax is always on second dimension.
softMax->setAxes(1 << 1);

auto* softmax = addSoftmax(ctx, node, input);
nvinfer1::IUnaryLayer* unaryLayer = ctx->network()->addUnary(*softmax, nvinfer1::UnaryOperation::kLOG);
// Reshape back to original shape
nvinfer1::IUnaryLayer* unaryLayer = ctx->network()->addUnary(*softMax->getOutput(0), nvinfer1::UnaryOperation::kLOG);
auto *reshapeLayer = addShuffle(ctx, *unaryLayer->getOutput(0), dims);
auto* reshapeLayer = addShuffle(ctx, *unaryLayer->getOutput(0), shapeOf(input));
RETURN_FIRST_OUTPUT(reshapeLayer);
}

Expand Down Expand Up @@ -3573,27 +3690,10 @@ DEFINE_BUILTIN_OP_IMPORTER(Slice)

DEFINE_BUILTIN_OP_IMPORTER(Softmax)
{
OnnxAttrs attrs(node, ctx);
// "input : T"
nvinfer1::ITensor& input = convertToTensor(inputs.at(0), ctx);
const auto dims = shapeOf(input);

// "axis : int (default is 1)"
int axis = attrs.get("axis", 1);

// "Negative value means counting dimensions from the back.
// Accepted range is [-r, r-1] where r = rank(input)."
TRT_CHECK(convertAxis(axis, dims.size()));

// "The input does not need to explicitly be a 2D vector; rather, it will be coerced into one."
auto* flattened = flattenTensor(ctx, node, input, axis);
auto* softMax = ctx->network()->addSoftMax(*flattened);
ctx->registerLayer(softMax, node.name());
// ONNX softmax is always on second dimension.
softMax->setAxes(1 << 1);

auto& input = convertToTensor(inputs.at(0), ctx);
auto* softmax = addSoftmax(ctx, node, input);
// Reshape back to original shape
auto* reshapeLayer = addShuffle(ctx, *softMax->getOutput(0), dims);
auto* reshapeLayer = addShuffle(ctx, *softmax, shapeOf(input));
RETURN_FIRST_OUTPUT(reshapeLayer);
}

Expand Down Expand Up @@ -3684,11 +3784,26 @@ DEFINE_BUILTIN_OP_IMPORTER(Split)
std::vector<int> splitList;
ShapeTensor sizes;
ShapeTensor sizeSliceAxis;
const bool hasSplitList = attrs.count("split");
const bool hasSplitList = (ctx->getOpsetVersion() >= 13) ? (inputs.size() == 2) : attrs.count("split");
if (hasSplitList)
{
// "Lengths of the parts can be specified using argument split."
splitList = attrs.get<std::vector<int>>("split");
// In opset >= 13, split lengths are an optional input
if (ctx->getOpsetVersion() >= 13)
{
ASSERT(inputs.at(1).is_weights() && "Split input 'split', if specified, must be an initializer!", ErrorCode::kUNSUPPORTED_NODE);
auto splitWeights = inputs.at(1).weights();
int32_t* splitValues = static_cast<int32_t*>(splitWeights.values);
for (size_t i = 0; i < splitWeights.count(); i++)
{
splitList.push_back(splitValues[i]);
}
}
// Pre-opset 13 split lengths are provided as an attribute
else
{
splitList = attrs.get<std::vector<int>>("split");
}
ASSERT(static_cast<int>(splitList.size()) == numOutputs, ErrorCode::kINVALID_NODE);
}
else
Expand Down Expand Up @@ -3737,9 +3852,45 @@ DEFINE_BUILTIN_OP_IMPORTER(Squeeze)
// "data : T
// Tensor with at least max(dims) dimensions."
nvinfer1::ITensor& data = convertToTensor(inputs.at(0), ctx);
std::vector<int> axes;
// In opset >= 13, axes are an optional input
if (ctx->getOpsetVersion() >= 13)
{
if (inputs.size() == 2)
{
ASSERT(inputs.at(1).is_weights() && "Squeeze axes input must an initializer!", ErrorCode::kUNSUPPORTED_NODE);
// Map weights value to axes
auto axesWeights = inputs.at(1).weights();
int32_t* axesValues = static_cast<int32_t*>(axesWeights.values);
for (size_t i = 0; i < axesWeights.count(); i++)
{
axes.push_back(axesValues[i]);
}
}
}
// Pre-opset 13 axes are provided as an attribute
else
{
OnnxAttrs attrs(node, ctx);
if (attrs.count("axes"))
{
axes = attrs.get<std::vector<int>>("axes");
}
}

OnnxAttrs attrs(node, ctx);
auto axes = attrs.get<std::vector<int>>("axes");
// If axes are ommitted, squeeze all dimensions with values 1
if (axes.size() == 0)
{
const auto shape = data.getDimensions();
ASSERT(!isDynamic(shape) && "Cannot infer squeeze dimensions from a dynamic shape! Please re-export your model with the Squeeze axes input set.", ErrorCode::kUNSUPPORTED_NODE);
for (int i = 0; i < shape.nbDims; i++)
{
if (shape.d[i] == 1)
{
axes.push_back(i);
}
}
}

int rank = data.getDimensions().nbDims;
for (auto& axis : axes)
Expand All @@ -3750,7 +3901,6 @@ DEFINE_BUILTIN_OP_IMPORTER(Squeeze)
// "squeezed : T
// Reshaped tensor with same data as input."
auto* squeezed = squeezeTensor(ctx, node, data, axes, true);

ASSERT(squeezed && "Failed to squeeze tensor!", ErrorCode::kUNSUPPORTED_NODE);

return {{squeezed}};
Expand Down Expand Up @@ -3893,11 +4043,25 @@ DEFINE_BUILTIN_OP_IMPORTER(Unsqueeze)
// "data : T
// Original tensor"
nvinfer1::ITensor& data = convertToTensor(inputs.at(0), ctx);
OnnxAttrs attrs(node, ctx);
std::vector<int> axes;

// "axes : list of ints (required)
// List of integers indicating the dimensions to be inserted."
auto axes = attrs.get<std::vector<int>>("axes");
if (ctx->getOpsetVersion() >= 13)
{
const ShapeTensor axesInput{inputs.at(1)};
ASSERT(axesInput.allValuesKnown() && "Axes input for unsqueeze operation should be a constant tensor.",
ErrorCode::kUNSUPPORTED_NODE);
for (auto& a : axesInput)
{
axes.push_back(a);
}
}
else
{
OnnxAttrs attrs(node, ctx);
// "axes : list of ints (required)
// List of integers indicating the dimensions to be inserted."
axes = attrs.get<std::vector<int>>("axes");
}

// "Negative value means counting dimensions from the back."
const int newSize = data.getDimensions().nbDims + axes.size();
Expand All @@ -3909,7 +4073,6 @@ DEFINE_BUILTIN_OP_IMPORTER(Unsqueeze)
// "expanded : T
// Reshaped tensor with same data as input."
auto* expanded = unsqueezeTensor(ctx, node, data, axes, true);

ASSERT(expanded && "Failed to unsqueeze tensor!", ErrorCode::kUNSUPPORTED_NODE);

return {{expanded}};
Expand Down
11 changes: 10 additions & 1 deletion docs/Changelog.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,15 @@
# ONNX-TensorRT Changelog

## 21.02 Container Release - 2021-01-22
## 21.03 Container Release - 2021-03-09
### Added
- Added opset13 support for `SoftMax`, `LogSoftmax`, `Squeeze`, and `Unsqueeze`
- Added support for the `EyeLike` operator
- Added support for the `GatherElements` operator

### Fixes
### Removed

## 21.02 Container Release - 2021-01-18
### Added
- Added support for the `ReverseSequence` operator [#590] - https://github.com/onnx/onnx-tensorrt/pull/590
- Updated `parse()` and `supportsModel()` API calls with an optional `model_path` parameter to support models with external weights [#621](https://github.com/onnx/onnx-tensorrt/pull/621)
Expand Down
Loading

0 comments on commit cb2ae79

Please sign in to comment.