Skip to content

Commit

Permalink
RAG end to end perf measurements using Langsmith (#60)
Browse files Browse the repository at this point in the history
Co-authored-by: Antony Vance <antony.vance@intel.com>
  • Loading branch information
ckhened and Antonyvance authored Apr 9, 2024
1 parent c4ba63e commit 855fbfe
Show file tree
Hide file tree
Showing 3 changed files with 775 additions and 0 deletions.
31 changes: 31 additions & 0 deletions ChatQnA/langchain/test/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
## Performance measurement tests with langsmith

Pre-requisite: Signup in langsmith [https://www.langchain.com/langsmith] and get the api token <br />

### Steps to run perf measurements with tgi_gaudi.ipynb jupyter notebook

1. This dir is mounted at /test in qna-rag-redis-server
2. Make sure redis container and LLM serving is up and running
3. enter into qna-rag-redis-server container and start jupyter notebook server (can specify needed IP address and jupyter will run on port 8888)
```
docker exec -it qna-rag-redis-server bash
cd /test
jupyter notebook --allow-root --ip=X.X.X.X
```
4. Launch jupyter notebook in your browser and open the tgi_gaudi.ipynb notebook
5. Update all the configuration parameters in the second cell of the notebook
6. Clear all the cells and run all the cells
7. The output of the last cell which calls client.run_on_dataset() will run the langchain Q&A test and captures measurements in the langsmith server. The URL to access the test result can be obtained from the output of the command
<br/><br/>

### Steps to run perf measurements with end_to_end_rag_test.py python script

1. This dir is mounted at /test in qna-rag-redis-server
2. Make sure redis container and LLM serving is up and running
3. enter into qna-rag-redis-server container and run the python script
```
docker exec -it qna-rag-redis-server bash
cd /test
python end_to_end_rag_test.py -l "<LLM model serving - TGI or VLLM>" -e <TEI embedding model serving> -m <LLM model name> -ht "<huggingface token>" -lt <langsmith api key> -dbs "<path to schema>" -dbu "<redis server URL>" -dbi "<DB Index name>" -d "<langsmith dataset name>"
```
4. Check the results in langsmith server
248 changes: 248 additions & 0 deletions ChatQnA/langchain/test/end_to_end_rag_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
#!/usr/bin/env python

# Copyright (c) 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import uuid
from operator import itemgetter
from typing import Any, List, Mapping, Optional, Sequence

from langchain.prompts import ChatPromptTemplate
from langchain.schema.document import Document
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable.passthrough import RunnableAssign
from langchain_benchmarks import clone_public_dataset, registry
from langchain_benchmarks.rag import get_eval_config
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceHubEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import Redis
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.prompt_values import ChatPromptValue
from langchain_openai import ChatOpenAI
from langsmith.client import Client
from transformers import AutoTokenizer, LlamaForCausalLM

# Parameters and settings
ENDPOINT_URL_GAUDI2 = "http://localhost:8000"
ENDPOINT_URL_VLLM = "http://localhost:8001/v1"
TEI_ENDPOINT = "http://localhost:8002"
LANG_CHAIN_DATASET = "<Dataset name to add>"
HF_MODEL_NAME = "<Model name to add>"
PROMPT_TOKENS_LEN = 214 # Magic number for prompt template tokens
MAX_INPUT_TOKENS = 1024
MAX_OUTPUT_TOKENS = 128

# Generate a unique run ID for this experiment
run_uid = uuid.uuid4().hex[:6]

tokenizer = None


def crop_tokens(prompt, max_len):
inputs = tokenizer(prompt, return_tensors="pt")
inputs_cropped = inputs["input_ids"][0:, 0:max_len]
prompt_cropped = tokenizer.batch_decode(
inputs_cropped, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return prompt_cropped


# After the retriever fetches documents, this
# function formats them in a string to present for the LLM
def format_docs(docs: Sequence[Document]) -> str:
formatted_docs = []
for i, doc in enumerate(docs):
doc_string = (
f"<document index='{i}'>\n"
f"<source>{doc.metadata.get('source')}</source>\n"
f"<doc_content>{doc.page_content[0:]}</doc_content>\n"
"</document>"
)
# Truncate the retrieval data based on the max tokens required
cropped = crop_tokens(doc_string, MAX_INPUT_TOKENS - PROMPT_TOKENS_LEN)

formatted_docs.append(cropped) # doc_string
formatted_str = "\n".join(formatted_docs)
return f"<documents>\n{formatted_str}\n</documents>"


def ingest_dataset(args, langchain_docs):
clone_public_dataset(langchain_docs.dataset_id, dataset_name=langchain_docs.name)
docs = list(langchain_docs.get_docs())
embedder = HuggingFaceHubEmbeddings(model=args.embedding_endpoint_url)

_ = Redis.from_texts(
# appending this little bit can sometimes help with semantic retrieval
# especially with multiple companies
texts=[d.page_content for d in docs],
metadatas=[d.metadata for d in docs],
embedding=embedder,
index_name=args.db_index,
index_schema=args.db_schema,
redis_url=args.db_url,
)


def GetLangchainDataset(args):
registry_retrieved = registry.filter(Type="RetrievalTask")
langchain_docs = registry_retrieved[args.langchain_dataset]
return langchain_docs


def buildchain(args):
embedder = HuggingFaceHubEmbeddings(model=args.embedding_endpoint_url)
vectorstore = Redis.from_existing_index(
embedding=embedder, index_name=args.db_index, schema=args.db_schema, redis_url=args.db_url
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an AI assistant answering questions about LangChain."
"\n{context}\n"
"Respond solely based on the document content.",
),
("human", "{question}"),
]
)

llm = None
match args.llm_service_api:
case "tgi-gaudi":
llm = HuggingFaceEndpoint(
endpoint_url=args.llm_endpoint_url,
max_new_tokens=MAX_OUTPUT_TOKENS,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=1.0,
repetition_penalty=1.03,
streaming=False,
truncate=1024,
)
case "vllm-openai":
llm = ChatOpenAI(
model=args.model_name,
openai_api_key="EMPTY",
openai_api_base=args.llm_endpoint_url,
max_tokens=MAX_OUTPUT_TOKENS,
temperature=1.0,
top_p=0.95,
streaming=False,
frequency_penalty=1.03,
)

response_generator = (prompt | llm | StrOutputParser()).with_config(
run_name="GenerateResponse",
)

# This is the final response chain.
# It fetches the "question" key from the input dict,
# passes it to the retriever, then formats as a string.

chain = (
RunnableAssign(
{"context": (itemgetter("question") | retriever | format_docs).with_config(run_name="FormatDocs")}
)
# The "RunnableAssign" above returns a dict with keys
# question (from the original input) and
# context: the string-formatted docs.
# This is passed to the response_generator above
| response_generator
)
return chain


def run_test(args, chain):
client = Client()
test_run = client.run_on_dataset(
dataset_name=args.langchain_dataset,
llm_or_chain_factory=chain,
evaluation=None,
project_name=f"{args.llm_service_api}-{args.model_name} op-{MAX_OUTPUT_TOKENS} cl-{args.concurrency} iter-{run_uid}",
project_metadata={
"index_method": "basic",
},
concurrency_level=args.concurrency,
verbose=True,
)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-l",
"--llm_endpoint_url",
type=str,
required=False,
default=ENDPOINT_URL_GAUDI2,
help="LLM Service Endpoint URL",
)
parser.add_argument(
"-e",
"--embedding_endpoint_url",
type=str,
default=TEI_ENDPOINT,
required=False,
help="Embedding Service Endpoint URL",
)
parser.add_argument("-m", "--model_name", type=str, default=HF_MODEL_NAME, required=False, help="Model Name")
parser.add_argument("-ht", "--huggingface_token", type=str, required=True, help="Huggingface API token")
parser.add_argument("-lt", "--langchain_token", type=str, required=True, help="langchain API token")
parser.add_argument(
"-d",
"--langchain_dataset",
type=str,
required=True,
help="langchain dataset name Refer: https://docs.smith.langchain.com/evaluation/quickstart ",
)

parser.add_argument("-c", "--concurrency", type=int, default=16, required=False, help="Concurrency Level")

parser.add_argument(
"-lm",
"--llm_service_api",
type=str,
default="tgi-gaudi",
required=False,
help='Choose between "tgi-gaudi" or "vllm-openai"',
)

parser.add_argument(
"-ig", "--ingest_dataset", type=bool, default=False, required=False, help='Set True to ingest dataset"'
)

parser.add_argument("-dbu", "--db_url", type=str, required=True, help="Vector DB URL")

parser.add_argument("-dbs", "--db_schema", type=str, required=True, help="Vector DB Schema")

parser.add_argument("-dbi", "--db_index", type=str, required=True, help="Vector DB Index Name")

args = parser.parse_args()

if args.ingest_dataset:
langchain_doc = GetLangchainDataset(args)
ingest_dataset(args, langchain_doc)

tokenizer = AutoTokenizer.from_pretrained(args.model_name)
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = args.langchain_token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = args.huggingface_token

chain = buildchain(args)
run_test(args, chain)
Loading

0 comments on commit 855fbfe

Please sign in to comment.