-
Notifications
You must be signed in to change notification settings - Fork 210
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
RAG end to end perf measurements using Langsmith (#60)
Co-authored-by: Antony Vance <antony.vance@intel.com>
- Loading branch information
1 parent
c4ba63e
commit 855fbfe
Showing
3 changed files
with
775 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
## Performance measurement tests with langsmith | ||
|
||
Pre-requisite: Signup in langsmith [https://www.langchain.com/langsmith] and get the api token <br /> | ||
|
||
### Steps to run perf measurements with tgi_gaudi.ipynb jupyter notebook | ||
|
||
1. This dir is mounted at /test in qna-rag-redis-server | ||
2. Make sure redis container and LLM serving is up and running | ||
3. enter into qna-rag-redis-server container and start jupyter notebook server (can specify needed IP address and jupyter will run on port 8888) | ||
``` | ||
docker exec -it qna-rag-redis-server bash | ||
cd /test | ||
jupyter notebook --allow-root --ip=X.X.X.X | ||
``` | ||
4. Launch jupyter notebook in your browser and open the tgi_gaudi.ipynb notebook | ||
5. Update all the configuration parameters in the second cell of the notebook | ||
6. Clear all the cells and run all the cells | ||
7. The output of the last cell which calls client.run_on_dataset() will run the langchain Q&A test and captures measurements in the langsmith server. The URL to access the test result can be obtained from the output of the command | ||
<br/><br/> | ||
|
||
### Steps to run perf measurements with end_to_end_rag_test.py python script | ||
|
||
1. This dir is mounted at /test in qna-rag-redis-server | ||
2. Make sure redis container and LLM serving is up and running | ||
3. enter into qna-rag-redis-server container and run the python script | ||
``` | ||
docker exec -it qna-rag-redis-server bash | ||
cd /test | ||
python end_to_end_rag_test.py -l "<LLM model serving - TGI or VLLM>" -e <TEI embedding model serving> -m <LLM model name> -ht "<huggingface token>" -lt <langsmith api key> -dbs "<path to schema>" -dbu "<redis server URL>" -dbi "<DB Index name>" -d "<langsmith dataset name>" | ||
``` | ||
4. Check the results in langsmith server |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
#!/usr/bin/env python | ||
|
||
# Copyright (c) 2024 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import os | ||
import uuid | ||
from operator import itemgetter | ||
from typing import Any, List, Mapping, Optional, Sequence | ||
|
||
from langchain.prompts import ChatPromptTemplate | ||
from langchain.schema.document import Document | ||
from langchain.schema.output_parser import StrOutputParser | ||
from langchain.schema.runnable.passthrough import RunnableAssign | ||
from langchain_benchmarks import clone_public_dataset, registry | ||
from langchain_benchmarks.rag import get_eval_config | ||
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceHubEmbeddings | ||
from langchain_community.llms import HuggingFaceEndpoint | ||
from langchain_community.vectorstores import Redis | ||
from langchain_core.callbacks.manager import CallbackManagerForLLMRun | ||
from langchain_core.language_models.llms import LLM | ||
from langchain_core.prompt_values import ChatPromptValue | ||
from langchain_openai import ChatOpenAI | ||
from langsmith.client import Client | ||
from transformers import AutoTokenizer, LlamaForCausalLM | ||
|
||
# Parameters and settings | ||
ENDPOINT_URL_GAUDI2 = "http://localhost:8000" | ||
ENDPOINT_URL_VLLM = "http://localhost:8001/v1" | ||
TEI_ENDPOINT = "http://localhost:8002" | ||
LANG_CHAIN_DATASET = "<Dataset name to add>" | ||
HF_MODEL_NAME = "<Model name to add>" | ||
PROMPT_TOKENS_LEN = 214 # Magic number for prompt template tokens | ||
MAX_INPUT_TOKENS = 1024 | ||
MAX_OUTPUT_TOKENS = 128 | ||
|
||
# Generate a unique run ID for this experiment | ||
run_uid = uuid.uuid4().hex[:6] | ||
|
||
tokenizer = None | ||
|
||
|
||
def crop_tokens(prompt, max_len): | ||
inputs = tokenizer(prompt, return_tensors="pt") | ||
inputs_cropped = inputs["input_ids"][0:, 0:max_len] | ||
prompt_cropped = tokenizer.batch_decode( | ||
inputs_cropped, skip_special_tokens=True, clean_up_tokenization_spaces=False | ||
)[0] | ||
return prompt_cropped | ||
|
||
|
||
# After the retriever fetches documents, this | ||
# function formats them in a string to present for the LLM | ||
def format_docs(docs: Sequence[Document]) -> str: | ||
formatted_docs = [] | ||
for i, doc in enumerate(docs): | ||
doc_string = ( | ||
f"<document index='{i}'>\n" | ||
f"<source>{doc.metadata.get('source')}</source>\n" | ||
f"<doc_content>{doc.page_content[0:]}</doc_content>\n" | ||
"</document>" | ||
) | ||
# Truncate the retrieval data based on the max tokens required | ||
cropped = crop_tokens(doc_string, MAX_INPUT_TOKENS - PROMPT_TOKENS_LEN) | ||
|
||
formatted_docs.append(cropped) # doc_string | ||
formatted_str = "\n".join(formatted_docs) | ||
return f"<documents>\n{formatted_str}\n</documents>" | ||
|
||
|
||
def ingest_dataset(args, langchain_docs): | ||
clone_public_dataset(langchain_docs.dataset_id, dataset_name=langchain_docs.name) | ||
docs = list(langchain_docs.get_docs()) | ||
embedder = HuggingFaceHubEmbeddings(model=args.embedding_endpoint_url) | ||
|
||
_ = Redis.from_texts( | ||
# appending this little bit can sometimes help with semantic retrieval | ||
# especially with multiple companies | ||
texts=[d.page_content for d in docs], | ||
metadatas=[d.metadata for d in docs], | ||
embedding=embedder, | ||
index_name=args.db_index, | ||
index_schema=args.db_schema, | ||
redis_url=args.db_url, | ||
) | ||
|
||
|
||
def GetLangchainDataset(args): | ||
registry_retrieved = registry.filter(Type="RetrievalTask") | ||
langchain_docs = registry_retrieved[args.langchain_dataset] | ||
return langchain_docs | ||
|
||
|
||
def buildchain(args): | ||
embedder = HuggingFaceHubEmbeddings(model=args.embedding_endpoint_url) | ||
vectorstore = Redis.from_existing_index( | ||
embedding=embedder, index_name=args.db_index, schema=args.db_schema, redis_url=args.db_url | ||
) | ||
retriever = vectorstore.as_retriever(search_kwargs={"k": 1}) | ||
prompt = ChatPromptTemplate.from_messages( | ||
[ | ||
( | ||
"system", | ||
"You are an AI assistant answering questions about LangChain." | ||
"\n{context}\n" | ||
"Respond solely based on the document content.", | ||
), | ||
("human", "{question}"), | ||
] | ||
) | ||
|
||
llm = None | ||
match args.llm_service_api: | ||
case "tgi-gaudi": | ||
llm = HuggingFaceEndpoint( | ||
endpoint_url=args.llm_endpoint_url, | ||
max_new_tokens=MAX_OUTPUT_TOKENS, | ||
top_k=10, | ||
top_p=0.95, | ||
typical_p=0.95, | ||
temperature=1.0, | ||
repetition_penalty=1.03, | ||
streaming=False, | ||
truncate=1024, | ||
) | ||
case "vllm-openai": | ||
llm = ChatOpenAI( | ||
model=args.model_name, | ||
openai_api_key="EMPTY", | ||
openai_api_base=args.llm_endpoint_url, | ||
max_tokens=MAX_OUTPUT_TOKENS, | ||
temperature=1.0, | ||
top_p=0.95, | ||
streaming=False, | ||
frequency_penalty=1.03, | ||
) | ||
|
||
response_generator = (prompt | llm | StrOutputParser()).with_config( | ||
run_name="GenerateResponse", | ||
) | ||
|
||
# This is the final response chain. | ||
# It fetches the "question" key from the input dict, | ||
# passes it to the retriever, then formats as a string. | ||
|
||
chain = ( | ||
RunnableAssign( | ||
{"context": (itemgetter("question") | retriever | format_docs).with_config(run_name="FormatDocs")} | ||
) | ||
# The "RunnableAssign" above returns a dict with keys | ||
# question (from the original input) and | ||
# context: the string-formatted docs. | ||
# This is passed to the response_generator above | ||
| response_generator | ||
) | ||
return chain | ||
|
||
|
||
def run_test(args, chain): | ||
client = Client() | ||
test_run = client.run_on_dataset( | ||
dataset_name=args.langchain_dataset, | ||
llm_or_chain_factory=chain, | ||
evaluation=None, | ||
project_name=f"{args.llm_service_api}-{args.model_name} op-{MAX_OUTPUT_TOKENS} cl-{args.concurrency} iter-{run_uid}", | ||
project_metadata={ | ||
"index_method": "basic", | ||
}, | ||
concurrency_level=args.concurrency, | ||
verbose=True, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"-l", | ||
"--llm_endpoint_url", | ||
type=str, | ||
required=False, | ||
default=ENDPOINT_URL_GAUDI2, | ||
help="LLM Service Endpoint URL", | ||
) | ||
parser.add_argument( | ||
"-e", | ||
"--embedding_endpoint_url", | ||
type=str, | ||
default=TEI_ENDPOINT, | ||
required=False, | ||
help="Embedding Service Endpoint URL", | ||
) | ||
parser.add_argument("-m", "--model_name", type=str, default=HF_MODEL_NAME, required=False, help="Model Name") | ||
parser.add_argument("-ht", "--huggingface_token", type=str, required=True, help="Huggingface API token") | ||
parser.add_argument("-lt", "--langchain_token", type=str, required=True, help="langchain API token") | ||
parser.add_argument( | ||
"-d", | ||
"--langchain_dataset", | ||
type=str, | ||
required=True, | ||
help="langchain dataset name Refer: https://docs.smith.langchain.com/evaluation/quickstart ", | ||
) | ||
|
||
parser.add_argument("-c", "--concurrency", type=int, default=16, required=False, help="Concurrency Level") | ||
|
||
parser.add_argument( | ||
"-lm", | ||
"--llm_service_api", | ||
type=str, | ||
default="tgi-gaudi", | ||
required=False, | ||
help='Choose between "tgi-gaudi" or "vllm-openai"', | ||
) | ||
|
||
parser.add_argument( | ||
"-ig", "--ingest_dataset", type=bool, default=False, required=False, help='Set True to ingest dataset"' | ||
) | ||
|
||
parser.add_argument("-dbu", "--db_url", type=str, required=True, help="Vector DB URL") | ||
|
||
parser.add_argument("-dbs", "--db_schema", type=str, required=True, help="Vector DB Schema") | ||
|
||
parser.add_argument("-dbi", "--db_index", type=str, required=True, help="Vector DB Index Name") | ||
|
||
args = parser.parse_args() | ||
|
||
if args.ingest_dataset: | ||
langchain_doc = GetLangchainDataset(args) | ||
ingest_dataset(args, langchain_doc) | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(args.model_name) | ||
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | ||
os.environ["LANGCHAIN_API_KEY"] = args.langchain_token | ||
os.environ["HUGGINGFACEHUB_API_TOKEN"] = args.huggingface_token | ||
|
||
chain = buildchain(args) | ||
run_test(args, chain) |
Oops, something went wrong.