Skip to content

Commit

Permalink
[Enhance] add new config for _base_ dir (#2053)
Browse files Browse the repository at this point in the history
* add new config

* fix lint

* add gitkeep
  • Loading branch information
liuwenran authored Nov 10, 2023
1 parent d5586d3 commit c2f8f3a
Show file tree
Hide file tree
Showing 46 changed files with 3,189 additions and 0 deletions.
192 changes: 192 additions & 0 deletions mmagic/configs/_base_/datasets/basicvsr_test_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.dataset import DefaultSampler

from mmagic.datasets import BasicFramesDataset
from mmagic.datasets.transforms import (GenerateSegmentIndices,
LoadImageFromFile, MirrorSequence,
PackInputs)
from mmagic.engine.runner import MultiTestLoop
from mmagic.evaluation import PSNR, SSIM

# configs for REDS4
reds_data_root = 'data/REDS'

reds_pipeline = [
dict(type=GenerateSegmentIndices, interval_list=[1]),
dict(type=LoadImageFromFile, key='img', channel_order='rgb'),
dict(type=LoadImageFromFile, key='gt', channel_order='rgb'),
dict(type=PackInputs)
]

reds_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=BasicFramesDataset,
metainfo=dict(dataset_type='reds_reds4', task_name='vsr'),
data_root=reds_data_root,
data_prefix=dict(img='train_sharp_bicubic/X4', gt='train_sharp'),
ann_file='meta_info_reds4_val.txt',
depth=1,
num_input_frames=100,
fixed_seq_len=100,
pipeline=reds_pipeline))

reds_evaluator = [
dict(type=PSNR, prefix='REDS4-BIx4-RGB'),
dict(type=SSIM, prefix='REDS4-BIx4-RGB')
]

# configs for vimeo90k-bd and vimeo90k-bi
vimeo_90k_data_root = 'data/vimeo90k'
vimeo_90k_file_list = [
'im1.png', 'im2.png', 'im3.png', 'im4.png', 'im5.png', 'im6.png', 'im7.png'
]

vimeo_90k_pipeline = [
dict(type=LoadImageFromFile, key='img', channel_order='rgb'),
dict(type=LoadImageFromFile, key='gt', channel_order='rgb'),
dict(type=MirrorSequence, keys=['img']),
dict(type=PackInputs)
]

vimeo_90k_bd_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=BasicFramesDataset,
metainfo=dict(dataset_type='vimeo90k_seq', task_name='vsr'),
data_root=vimeo_90k_data_root,
data_prefix=dict(img='BDx4', gt='GT'),
ann_file='meta_info_Vimeo90K_test_GT.txt',
depth=2,
num_input_frames=7,
fixed_seq_len=7,
load_frames_list=dict(img=vimeo_90k_file_list, gt=['im4.png']),
pipeline=vimeo_90k_pipeline))

vimeo_90k_bi_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=BasicFramesDataset,
metainfo=dict(dataset_type='vimeo90k_seq', task_name='vsr'),
data_root=vimeo_90k_data_root,
data_prefix=dict(img='BIx4', gt='GT'),
ann_file='meta_info_Vimeo90K_test_GT.txt',
depth=2,
num_input_frames=7,
fixed_seq_len=7,
load_frames_list=dict(img=vimeo_90k_file_list, gt=['im4.png']),
pipeline=vimeo_90k_pipeline))

vimeo_90k_bd_evaluator = [
dict(type=PSNR, convert_to='Y', prefix='Vimeo-90K-T-BDx4-Y'),
dict(type=SSIM, convert_to='Y', prefix='Vimeo-90K-T-BDx4-Y'),
]

vimeo_90k_bi_evaluator = [
dict(type=PSNR, convert_to='Y', prefix='Vimeo-90K-T-BIx4-Y'),
dict(type=SSIM, convert_to='Y', prefix='Vimeo-90K-T-BIx4-Y'),
]

# config for UDM10 (BDx4)
udm10_data_root = 'data/UDM10'

udm10_pipeline = [
dict(
type=GenerateSegmentIndices,
interval_list=[1],
filename_tmpl='{:04d}.png'),
dict(type=LoadImageFromFile, key='img', channel_order='rgb'),
dict(type=LoadImageFromFile, key='gt', channel_order='rgb'),
dict(type=PackInputs)
]

udm10_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=BasicFramesDataset,
metainfo=dict(dataset_type='udm10', task_name='vsr'),
data_root=udm10_data_root,
data_prefix=dict(img='BDx4', gt='GT'),
pipeline=udm10_pipeline))

udm10_evaluator = [
dict(type=PSNR, convert_to='Y', prefix='UDM10-BDx4-Y'),
dict(type=SSIM, convert_to='Y', prefix='UDM10-BDx4-Y')
]

# config for vid4
vid4_data_root = 'data/Vid4'

vid4_pipeline = [
dict(type=GenerateSegmentIndices, interval_list=[1]),
dict(type=LoadImageFromFile, key='img', channel_order='rgb'),
dict(type=LoadImageFromFile, key='gt', channel_order='rgb'),
dict(type=PackInputs)
]
vid4_bd_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=BasicFramesDataset,
metainfo=dict(dataset_type='vid4', task_name='vsr'),
data_root=vid4_data_root,
data_prefix=dict(img='BDx4', gt='GT'),
ann_file='meta_info_Vid4_GT.txt',
depth=1,
pipeline=vid4_pipeline))

vid4_bi_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=BasicFramesDataset,
metainfo=dict(dataset_type='vid4', task_name='vsr'),
data_root=vid4_data_root,
data_prefix=dict(img='BIx4', gt='GT'),
ann_file='meta_info_Vid4_GT.txt',
depth=1,
pipeline=vid4_pipeline))

vid4_bd_evaluator = [
dict(type=PSNR, convert_to='Y', prefix='VID4-BDx4-Y'),
dict(type=SSIM, convert_to='Y', prefix='VID4-BDx4-Y'),
]
vid4_bi_evaluator = [
dict(type=PSNR, convert_to='Y', prefix='VID4-BIx4-Y'),
dict(type=SSIM, convert_to='Y', prefix='VID4-BIx4-Y'),
]

# config for test
test_cfg = dict(type=MultiTestLoop)
test_dataloader = [
reds_dataloader,
vimeo_90k_bd_dataloader,
vimeo_90k_bi_dataloader,
udm10_dataloader,
vid4_bd_dataloader,
vid4_bi_dataloader,
]
test_evaluator = [
reds_evaluator,
vimeo_90k_bd_evaluator,
vimeo_90k_bi_evaluator,
udm10_evaluator,
vid4_bd_evaluator,
vid4_bi_evaluator,
]
48 changes: 48 additions & 0 deletions mmagic/configs/_base_/datasets/celeba.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.dataset import DefaultSampler, InfiniteSampler

from mmagic.evaluation import MAE, PSNR, SSIM

# Base config for CelebA-HQ dataset

# dataset settings
dataset_type = 'BasicImageDataset'
data_root = 'data/CelebA-HQ'

train_dataloader = dict(
num_workers=4,
persistent_workers=False,
sampler=dict(type=InfiniteSampler, shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(gt=''),
ann_file='train_celeba_img_list.txt',
test_mode=False,
))

val_dataloader = dict(
num_workers=4,
persistent_workers=False,
drop_last=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(gt=''),
ann_file='val_celeba_img_list.txt',
test_mode=True,
))

test_dataloader = val_dataloader

val_evaluator = [
dict(type=MAE, mask_key='mask', scaling=100),
# By default, compute with pixel value from 0-1
# scale=2 to align with 1.0
# scale=100 seems to align with readme
dict(type=PSNR),
dict(type=SSIM),
]

test_evaluator = val_evaluator
45 changes: 45 additions & 0 deletions mmagic/configs/_base_/datasets/cifar10_nopad.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.dataset import DefaultSampler, InfiniteSampler

from mmagic.datasets import CIFAR10
from mmagic.datasets.transforms import Flip, PackInputs

cifar_pipeline = [
dict(type=Flip, keys=['gt'], flip_ratio=0.5, direction='horizontal'),
dict(type=PackInputs)
]
cifar_dataset = dict(
type=CIFAR10,
data_root='./data',
data_prefix='cifar10',
test_mode=False,
pipeline=cifar_pipeline)

# test dataset do not use flip
cifar_pipeline_test = [dict(type=PackInputs)]
cifar_dataset_test = dict(
type=CIFAR10,
data_root='./data',
data_prefix='cifar10',
test_mode=False,
pipeline=cifar_pipeline_test)

train_dataloader = dict(
num_workers=2,
dataset=cifar_dataset,
sampler=dict(type=InfiniteSampler, shuffle=True),
persistent_workers=True)

val_dataloader = dict(
batch_size=32,
num_workers=2,
dataset=cifar_dataset_test,
sampler=dict(type=DefaultSampler, shuffle=False),
persistent_workers=True)

test_dataloader = dict(
batch_size=32,
num_workers=2,
dataset=cifar_dataset_test,
sampler=dict(type=DefaultSampler, shuffle=False),
persistent_workers=True)
45 changes: 45 additions & 0 deletions mmagic/configs/_base_/datasets/comp1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.dataset import DefaultSampler, InfiniteSampler

from mmagic.evaluation import SAD, ConnectivityError, GradientError, MattingMSE

# Base config for Composition-1K dataset

# dataset settings
dataset_type = 'AdobeComp1kDataset'
data_root = 'data/adobe_composition-1k'

train_dataloader = dict(
num_workers=4,
persistent_workers=False,
sampler=dict(type=InfiniteSampler, shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='training_list.json',
test_mode=False,
))

val_dataloader = dict(
num_workers=4,
persistent_workers=False,
drop_last=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='test_list.json',
test_mode=True,
))

test_dataloader = val_dataloader

# TODO: matting
val_evaluator = [
dict(type=SAD),
dict(type=MattingMSE),
dict(type=GradientError),
dict(type=ConnectivityError),
]

test_evaluator = val_evaluator
Loading

0 comments on commit c2f8f3a

Please sign in to comment.