Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Support amp (pytorch >= 1.6.0) on DCN and DCNv2/ Add unit tests on DCN/DCNv2 amp #1029

Merged
merged 6 commits into from
May 23, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions mmcv/ops/deform_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,14 @@ def forward(ctx,
ctx.deform_groups = deform_groups
ctx.im2col_step = im2col_step

# until the code is modified for torch.cuda.amp.autocast,
# we need to cast weight to avoid type mismatch in fp16 training
# When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
# amp won't cast the type of model (float32), but "offset" is cast
# to float16 by nn.Conv2d automatically, leading to the type
# mismatch with input (when it is float32) or weight.
# The flag for whether to use fp16 or amp is the type of "offset",
# we cast weight and input to temporarily support fp16 and amp
# whatever the pytorch version is.
input = input.type_as(offset)
weight = weight.type_as(input)
ZwwWayne marked this conversation as resolved.
Show resolved Hide resolved
ctx.save_for_backward(input, offset, weight)

Expand Down
9 changes: 9 additions & 0 deletions mmcv/ops/modulated_deform_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,15 @@ def forward(ctx,
ctx.with_bias = bias is not None
if not ctx.with_bias:
bias = input.new_empty(0) # fake tensor
# When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
# amp won't cast the type of model (float32), but "offset" is cast
# to float16 by nn.Conv2d automatically, leading to the type
# mismatch with input (when it is float32) or weight.
# The flag for whether to use fp16 or amp is the type of "offset",
# we cast weight and input to temporarily support fp16 and amp
# whatever the pytorch version is.
input = input.type_as(offset)
weight = weight.type_as(input)
ctx.save_for_backward(input, offset, mask, weight, bias)
output = input.new_empty(
ModulatedDeformConv2dFunction._output_size(ctx, input, weight))
Expand Down
70 changes: 70 additions & 0 deletions tests/test_ops/test_deform_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,15 @@
import pytest
import torch

from mmcv.utils import TORCH_VERSION

try:
# If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
# would be imported and used; we should test if our modules support it.
from torch.cuda.amp import autocast
except ImportError:
pass

input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
[[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
Expand Down Expand Up @@ -71,7 +80,68 @@ def _test_deformconv(self, dtype=torch.float, threshold=1e-3):
with pytest.raises(AssertionError):
model = DeformConv2d(3, 4, 3, groups=3)

def _test_amp_deformconv(self, input_dtype, threshold=1e-3):
"""The function to test amp released on pytorch 1.6.0.

The type of input data might be torch.float or torch.half,
so we should test deform_conv in both cases. With amp, the
data type of model will NOT be set manually.

Args:
input_dtype: torch.float or torch.half.
threshold: the same as above function.
"""
if not torch.cuda.is_available():
return
from mmcv.ops import DeformConv2dPack
c_in = 1
c_out = 1
x = torch.Tensor(input).cuda().type(input_dtype)
x.requires_grad = True
model = DeformConv2dPack(c_in, c_out, 2, stride=1, padding=0)
model.conv_offset.weight.data = torch.nn.Parameter(
torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
model.conv_offset.bias.data = torch.nn.Parameter(
torch.Tensor(offset_bias).reshape(8))
model.weight.data = torch.nn.Parameter(
torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
model.cuda()

out = model(x)
out.backward(torch.ones_like(out))

assert np.allclose(out.data.detach().cpu().numpy(), gt_out, threshold)
assert np.allclose(x.grad.detach().cpu().numpy(), gt_x_grad, threshold)
assert np.allclose(
model.conv_offset.weight.grad.detach().cpu().numpy(),
gt_offset_weight_grad, threshold)
assert np.allclose(model.conv_offset.bias.grad.detach().cpu().numpy(),
gt_offset_bias_grad, threshold)
assert np.allclose(model.weight.grad.detach().cpu().numpy(),
gt_deform_weight_grad, threshold)

from mmcv.ops import DeformConv2d
# test bias
model = DeformConv2d(1, 1, 2, stride=1, padding=0)
assert not hasattr(model, 'bias')
# test bias=True
with pytest.raises(AssertionError):
model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
# test in_channels % group != 0
with pytest.raises(AssertionError):
model = DeformConv2d(3, 2, 3, groups=2)
# test out_channels % group != 0
with pytest.raises(AssertionError):
model = DeformConv2d(3, 4, 3, groups=3)

def test_deformconv(self):
self._test_deformconv(torch.double)
self._test_deformconv(torch.float)
self._test_deformconv(torch.half, 1e-1)

# test amp when torch version >= '1.6.0', the type of
# input data for deformconv might be torch.float or torch.half
if TORCH_VERSION != 'parrots' and TORCH_VERSION >= '1.6.0':
with autocast(enabled=True):
self._test_amp_deformconv(torch.float, 1e-1)
self._test_amp_deformconv(torch.half, 1e-1)
54 changes: 54 additions & 0 deletions tests/test_ops/test_modulated_deform_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,15 @@
import numpy
import torch

from mmcv.utils import TORCH_VERSION

try:
# If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
# would be imported and used; we should test if our modules support it.
from torch.cuda.amp import autocast
except ImportError:
pass

cur_dir = os.path.dirname(os.path.abspath(__file__))

input_t = [[[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]]]
Expand Down Expand Up @@ -58,7 +67,52 @@ def _test_mdconv(self, dtype=torch.float):
assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
dcn_offset_b_grad, 1e-2)

def _test_amp_mdconv(self, input_dtype=torch.float):
"""The function to test amp released on pytorch 1.6.0.

The type of input data might be torch.float or torch.half,
so we should test mdconv in both cases. With amp, the data
type of model will NOT be set manually.

Args:
input_dtype: torch.float or torch.half.
"""
if not torch.cuda.is_available():
return
from mmcv.ops import ModulatedDeformConv2dPack
input = torch.tensor(input_t).cuda().type(input_dtype)
input.requires_grad = True

dcn = ModulatedDeformConv2dPack(
1,
1,
kernel_size=(2, 2),
stride=1,
padding=1,
deform_groups=1,
bias=False).cuda()
dcn.weight.data.fill_(1.)
output = dcn(input)
output.sum().backward()
assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2)
assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad,
1e-2)
assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(),
dcn_w_grad, 1e-2)
assert numpy.allclose(
dcn.conv_offset.weight.grad.cpu().detach().numpy(),
dcn_offset_w_grad, 1e-2)
assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(),
dcn_offset_b_grad, 1e-2)

def test_mdconv(self):
self._test_mdconv(torch.double)
self._test_mdconv(torch.float)
self._test_mdconv(torch.half)

# test amp when torch version >= '1.6.0', the type of
# input data for mdconv might be torch.float or torch.half
if TORCH_VERSION != 'parrots' and TORCH_VERSION >= '1.6.0':
with autocast(enabled=True):
self._test_amp_mdconv(torch.float)
self._test_amp_mdconv(torch.half)