Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Release YOLOX model #6698

Merged
merged 5 commits into from
Dec 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion configs/yolox/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,14 @@ In this report, we present some experienced improvements to YOLO series, forming

| Backbone | size | Mem (GB) | box AP | Config | Download |
|:---------:|:-------:|:-------:|:-------:|:--------:|:------:|
| YOLOX-tiny | 416 | 3.5 | 32.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_tiny_8x8_300e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234.log.json) |
| YOLOX-s | 640 | 7.6 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_s_8x8_300e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711.log.json) |
| YOLOX-l | 640 | 19.9 | 49.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_l_8x8_300e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236.log.json) |
| YOLOX-x | 640 | 28.1 | 50.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_x_8x8_300e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254.log.json) |


**Note**:

1. The test score threshold is 0.001.
1. The test score threshold is 0.001, and the box AP indicates the best AP.
2. Due to the need for pre-training weights, we cannot reproduce the performance of the `yolox-nano` model. Please refer to https://github.com/Megvii-BaseDetection/YOLOX/issues/674 for more information.
3. We also trained the model by the official release of YOLOX based on [Megvii-BaseDetection/YOLOX#735](https://github.com/Megvii-BaseDetection/YOLOX/issues/735) with commit ID [38c633](https://github.com/Megvii-BaseDetection/YOLOX/tree/38c633bf176462ee42b110c70e4ffe17b5753208). We found that the best AP of `YOLOX-tiny`, `YOLOX-s`, `YOLOX-l`, and `YOLOX-x` is 31.8, 40.3, 49.2, and 50.9, respectively. The performance is consistent with that of our re-implementation (see Table above) but still has a gap (0.3~0.8 AP) in comparison with the reported performance in their [README](https://github.com/Megvii-BaseDetection/YOLOX/blob/38c633bf176462ee42b110c70e4ffe17b5753208/README.md#benchmark).
36 changes: 36 additions & 0 deletions configs/yolox/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,3 +32,39 @@ Models:
Metrics:
box AP: 40.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth
- Name: yolox_l_8x8_300e_coco
In Collection: YOLOX
Config: configs/yolox/yolox_l_8x8_300e_coco.py
Metadata:
Training Memory (GB): 19.9
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 49.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth
- Name: yolox_x_8x8_300e_coco
In Collection: YOLOX
Config: configs/yolox/yolox_x_8x8_300e_coco.py
Metadata:
Training Memory (GB): 28.1
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 50.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth
- Name: yolox_tiny_8x8_300e_coco
In Collection: YOLOX
Config: configs/yolox/yolox_tiny_8x8_300e_coco.py
Metadata:
Training Memory (GB): 3.5
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 32.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth
1 change: 1 addition & 0 deletions mmdet/datasets/pipelines/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -2201,6 +2201,7 @@ class MixUp:
"""MixUp data augmentation.

.. code:: text

mixup transform
+------------------------------+
| mixup image | |
Expand Down