Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support RTMDet-Ins and improve RTMDet test config. #9494

Merged
merged 18 commits into from
Dec 19, 2022
21 changes: 21 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,13 +68,32 @@ The master branch works with **PyTorch 1.6+**.
- **State of the art**

The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward.
The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.

</details>

Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox.

RangiLyu marked this conversation as resolved.
Show resolved Hide resolved
## What's New

### Highlight

We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
ZwwWayne marked this conversation as resolved.
Show resolved Hide resolved
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

**v3.0.0rc4** was released in 25/11/2022:

- Support [CondInst](https://arxiv.org/abs/2003.05664)
Expand Down Expand Up @@ -187,6 +206,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand All @@ -206,6 +226,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
<li><a href="configs/condinst">CondInst (ECCV 2020)</a></li>
<li><a href="projects/SparseInst">SparseInst (CVPR 2022)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand Down
21 changes: 21 additions & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,13 +67,32 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
- **性能高**

MMDetection 这个算法库源自于 COCO 2018 目标检测竞赛的冠军团队 *MMDet* 团队开发的代码,我们在之后持续进行了改进和提升。
新发布的 [RTMDet](configs/rtmdet) 还在实时实例分割和旋转目标检测任务中取得了最先进的成果,同时也在目标检测模型中取得了最佳的的参数量和精度平衡。

</details>

除了 MMDetection 之外,我们还开源了深度学习训练库 [MMEngine](https://github.com/open-mmlab/mmengine) 和计算机视觉基础库 [MMCV](https://github.com/open-mmlab/mmcv),它们是 MMDetection 的主要依赖。

## 最新进展

### 亮点

我们很高兴向大家介绍我们在实时目标识别任务方面的最新成果 RTMDet,包含了一系列的全卷积单阶段检测模型。 RTMDet 不仅在从 tiny 到 extra-large 尺寸的目标检测模型上上实现了最佳的参数量和精度的平衡,而且在实时实例分割和旋转目标检测任务上取得了最先进的成果。 更多细节请参阅[技术报告](https://arxiv.org/abs/2212.07784)。 预训练模型可以在[这里](configs/rtmdet)找到。

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

**v3.0.0rc4** 版本已经在 2022.11.25 发布:

- 支持了 [CondInst](https://arxiv.org/abs/2003.05664)
Expand Down Expand Up @@ -188,6 +207,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand All @@ -207,6 +227,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
<li><a href="configs/condinst">CondInst (ECCV 2020)</a></li>
<li><a href="projects/SparseInst">SparseInst (CVPR 2022)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand Down
Loading