Skip to content

Commit

Permalink
update npu results
Browse files Browse the repository at this point in the history
  • Loading branch information
wangjiangben-hw committed Nov 23, 2022
1 parent 0eb3b61 commit 12b39d7
Showing 1 changed file with 27 additions and 15 deletions.
42 changes: 27 additions & 15 deletions docs/en/device/npu.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,28 +7,40 @@ Please install MMCV with NPU device support according to {external+mmcv:doc}`the
Here we use 8 NPUs on your computer to train the model with the following command:

```shell
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
bash tools/dist_train.sh configs/resnet/resnet50_8xb32_in1k.py 8 --device npu
```

Also, you can use only one NPU to trian the model with the following command:
Also, you can use only one NPU to train the model with the following command:

```shell
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
python tools/train.py configs/resnet/resnet50_8xb32_in1k.py --device npu
```

## Verified Models

| Model | Top-1 (%) | Top-5 (%) | Config | Download |
| :--------------------------------------------------------: | :-------: | :-------: | :-----------------------------------------------------------: | :-------------------------------------------------------------: |
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnetv1d152_8xb32_in1k.log.json) |
| [ResNet-50](../papers/resnet.md) | 76.38 | 93.22 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnet50_8xb32_in1k.log) |
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/shufflenet-v2-1x_16xb64_in1k.json) |
| Model | Top-1 (%) | Top-5 (%) | Config | Download |
| :---------------------------------------------------------: | :-------: | :-------: | :----------------------------------------------------------: | :-------------------------------------------------------------: |
| [ResNet-50](../papers/resnet.md) | 76.38 | 93.22 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnet50_8xb32_in1k.log) |
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
| [ResNetV1D-152](../papers/resnet.md) | 79.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnetv1d152_8xb32_in1k.log.json) |
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/shufflenet-v2-1x_16xb64_in1k.json) |
| [MobileNetV2](../papers/mobilenet_v2.md) | 71.758 | 90.394 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/mobilenet-v2_8xb32_in1k.json) |
| [MobileNetV3-Small](../papers/mobilenet_v3.md) | 67.522 | 87.316 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v3/mobilenet-v3-small_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/mobilenet-v3-small_8xb32_in1k.json) |
| [\*CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
| [\*EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
| [\*\*DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |

**Notes:**

- If not specially marked, the results are almost same between results on the NPU and results on the GPU with FP32.
- (\*) The training results of these models are lower than the results on the readme in the corresponding model, mainly
because the results on the readme are directly the weight of the timm of the eval, and the results on this side are
retrained according to the config with mmcls. The results of the config training on the GPU are consistent with the
results of the NPU.
- (\*\*) The accuracy of this model is slightly lower because config is a 4-card config, we use 8 cards to run, and users
can adjust hyperparameters to get the best accuracy results.

**All above models are provided by Huawei Ascend group.**

0 comments on commit 12b39d7

Please sign in to comment.