Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add adan optimizer #1180

Merged
merged 11 commits into from
Nov 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions mmcls/engine/optimizers/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .adan_t import Adan
from .lamb import Lamb

__all__ = [
'Lamb',
]
__all__ = ['Lamb', 'Adan']
312 changes: 312 additions & 0 deletions mmcls/engine/optimizers/adan_t.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,312 @@
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List

import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer

from mmcls.registry import OPTIMIZERS


@OPTIMIZERS.register_module()
class Adan(Optimizer):
"""Implements a pytorch variant of Adan.

Adan was proposed in
Adan : Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models. # noqa
https://arxiv.org/abs/2208.06677
Arguments:
params (iterable): iterable of parameters to optimize
or dicts defining parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float, flot], optional): coefficients used
for computing running averages of gradient.
(default: (0.98, 0.92, 0.99))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): decoupled weight decay
(L2 penalty) (default: 0)
max_grad_norm (float, optional): value used to clip
global grad norm (default: 0.0 no clip)
no_prox (bool): how to perform the decoupled weight decay
(default: False)
foreach (bool): if True would use torch._foreach implementation.
It's faster but uses slightly more memory.
"""

def __init__(self,
params,
lr=1e-3,
betas=(0.98, 0.92, 0.99),
eps=1e-8,
weight_decay=0.0,
max_grad_norm=0.0,
no_prox=False,
foreach: bool = True):
if not 0.0 <= max_grad_norm:
raise ValueError('Invalid Max grad norm: {}'.format(max_grad_norm))
if not 0.0 <= lr:
raise ValueError('Invalid learning rate: {}'.format(lr))
if not 0.0 <= eps:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError('Invalid beta parameter at index 0: {}'.format(
betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError('Invalid beta parameter at index 1: {}'.format(
betas[1]))
if not 0.0 <= betas[2] < 1.0:
raise ValueError('Invalid beta parameter at index 2: {}'.format(
betas[2]))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
max_grad_norm=max_grad_norm,
no_prox=no_prox,
foreach=foreach)
super().__init__(params, defaults)

def __setstate__(self, state):
super(Adan, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('no_prox', False)

@torch.no_grad()
def restart_opt(self):
for group in self.param_groups:
group['step'] = 0
for p in group['params']:
if p.requires_grad:
state = self.state[p]
# State initialization

# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
# Exponential moving average of gradient difference
state['exp_avg_diff'] = torch.zeros_like(p)

@torch.no_grad()
def step(self):
"""Performs a single optimization step."""
if self.defaults['max_grad_norm'] > 0:
device = self.param_groups[0]['params'][0].device
global_grad_norm = torch.zeros(1, device=device)

max_grad_norm = torch.tensor(
self.defaults['max_grad_norm'], device=device)
for group in self.param_groups:

for p in group['params']:
if p.grad is not None:
grad = p.grad
global_grad_norm.add_(grad.pow(2).sum())

global_grad_norm = torch.sqrt(global_grad_norm) + group['eps']

clip_global_grad_norm = \
torch.clamp(max_grad_norm / global_grad_norm, max=1.0)
else:
clip_global_grad_norm = 1.0

for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
exp_avg_diffs = []
pre_grads = []

beta1, beta2, beta3 = group['betas']
# assume same step across group now to simplify things
# per parameter step can be easily support
# by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1

bias_correction1 = 1.0 - beta1**group['step']
bias_correction2 = 1.0 - beta2**group['step']
bias_correction3 = 1.0 - beta3**group['step']

for p in group['params']:
if p.grad is None:
continue
params_with_grad.append(p)
grads.append(p.grad)

state = self.state[p]
if len(state) == 0:
state['exp_avg'] = torch.zeros_like(p)
state['exp_avg_sq'] = torch.zeros_like(p)
state['exp_avg_diff'] = torch.zeros_like(p)

if 'pre_grad' not in state or group['step'] == 1:
# at first step grad wouldn't be clipped
# by `clip_global_grad_norm`
# this is only to simplify implementation
state['pre_grad'] = p.grad

exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
exp_avg_diffs.append(state['exp_avg_diff'])
pre_grads.append(state['pre_grad'])

kwargs = dict(
params=params_with_grad,
grads=grads,
exp_avgs=exp_avgs,
exp_avg_sqs=exp_avg_sqs,
exp_avg_diffs=exp_avg_diffs,
pre_grads=pre_grads,
beta1=beta1,
beta2=beta2,
beta3=beta3,
bias_correction1=bias_correction1,
bias_correction2=bias_correction2,
bias_correction3_sqrt=math.sqrt(bias_correction3),
lr=group['lr'],
weight_decay=group['weight_decay'],
eps=group['eps'],
no_prox=group['no_prox'],
clip_global_grad_norm=clip_global_grad_norm,
)
if group['foreach']:
copy_grads = _multi_tensor_adan(**kwargs)
else:
copy_grads = _single_tensor_adan(**kwargs)

for p, copy_grad in zip(params_with_grad, copy_grads):
self.state[p]['pre_grad'] = copy_grad


def _single_tensor_adan(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
exp_avg_diffs: List[Tensor],
pre_grads: List[Tensor],
*,
beta1: float,
beta2: float,
beta3: float,
bias_correction1: float,
bias_correction2: float,
bias_correction3_sqrt: float,
lr: float,
weight_decay: float,
eps: float,
no_prox: bool,
clip_global_grad_norm: Tensor,
):
copy_grads = []
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
exp_avg_diff = exp_avg_diffs[i]
pre_grad = pre_grads[i]

grad = grad.mul_(clip_global_grad_norm)
copy_grads.append(grad.clone())

diff = grad - pre_grad
update = grad + beta2 * diff

exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t
exp_avg_diff.mul_(beta2).add_(diff, alpha=1 - beta2) # diff_t
exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1 - beta3) # n_t

denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps)
update = exp_avg / bias_correction1
update.add_(beta2 * exp_avg_diff / bias_correction2).div_(denom)

if no_prox:
param.mul_(1 - lr * weight_decay)
param.add_(update, alpha=-lr)
else:
param.add_(update, alpha=-lr)
param.div_(1 + lr * weight_decay)
return copy_grads


def _multi_tensor_adan(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
exp_avg_diffs: List[Tensor],
pre_grads: List[Tensor],
*,
beta1: float,
beta2: float,
beta3: float,
bias_correction1: float,
bias_correction2: float,
bias_correction3_sqrt: float,
lr: float,
weight_decay: float,
eps: float,
no_prox: bool,
clip_global_grad_norm: Tensor,
):
if clip_global_grad_norm < 1.0:
torch._foreach_mul_(grads, clip_global_grad_norm.item())
copy_grads = [g.clone() for g in grads]

diff = torch._foreach_sub(grads, pre_grads)
# NOTE: line below while looking identical gives different result,
# due to float precision errors.
# using mul+add produces identical results to single-tensor,
# using add+alpha doesn't
# update = torch._foreach_add(grads, torch._foreach_mul(diff, beta2))
update = torch._foreach_add(grads, diff, alpha=beta2)

torch._foreach_mul_(exp_avgs, beta1)
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t

torch._foreach_mul_(exp_avg_diffs, beta2)
torch._foreach_add_(exp_avg_diffs, diff, alpha=1 - beta2) # diff_t

torch._foreach_mul_(exp_avg_sqs, beta3)
torch._foreach_addcmul_(
exp_avg_sqs, update, update, value=1 - beta3) # n_t

denom = torch._foreach_sqrt(exp_avg_sqs)
torch._foreach_div_(denom, bias_correction3_sqrt)
torch._foreach_add_(denom, eps)

update = torch._foreach_div(exp_avgs, bias_correction1)
# NOTE: same issue as above.
# beta2 * diff / bias_correction2 != diff * (beta2 / bias_correction2) # noqa
# using faster version by default. uncomment for tests to pass
# torch._foreach_add_(update, torch._foreach_div(torch._foreach_mul(exp_avg_diffs, beta2), bias_correction2)) # noqa
torch._foreach_add_(
update, torch._foreach_mul(exp_avg_diffs, beta2 / bias_correction2))
torch._foreach_div_(update, denom)

if no_prox:
torch._foreach_mul_(params, 1 - lr * weight_decay)
else:
torch._foreach_add_(params, update, alpha=-lr)
torch._foreach_div_(params, 1 + lr * weight_decay)
return copy_grads