Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add RepVGG backbone and checkpoints #414

Merged
merged 72 commits into from
Sep 29, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
72 commits
Select commit Hold shift + click to select a range
b1e7f1b
Add RepVGG code.
zhangrui-wolf Aug 18, 2021
2f1ccc9
Add se_module as plugin.
zhangrui-wolf Aug 18, 2021
e40cec1
Add the repvggA0 primitive config
zhangrui-wolf Aug 18, 2021
40c4548
Change repvggA0.py to fit mmcls
zhangrui-wolf Aug 18, 2021
8164c25
Add RepVGG configs
zhangrui-wolf Aug 18, 2021
b8e751e
Add repvgg_to_mmcls
zhangrui-wolf Aug 18, 2021
8e1a856
Add tools/deployment/convert_repvggblock_param_to_deploy.py
zhangrui-wolf Aug 18, 2021
1d10f5a
Change configs/repvgg/README.md
zhangrui-wolf Aug 18, 2021
f862281
Streamlining the number of configuration files.
zhangrui-wolf Aug 18, 2021
eeb96a1
Fix lints
zhangrui-wolf Aug 18, 2021
d965202
Delete plugins
zhangrui-wolf Aug 19, 2021
e0a68a0
Delete code about plugin.
zhangrui-wolf Aug 19, 2021
6255f0f
Modify the code for using se module.
zhangrui-wolf Aug 19, 2021
73e1edd
Modify config to fit repvgg with se.
zhangrui-wolf Aug 19, 2021
d23f7d1
Change se_cfg to allow loading of pre-training parameters.
zhangrui-wolf Aug 19, 2021
a362a92
Reduce the complexity of the configuration file.
zhangrui-wolf Aug 21, 2021
7c6f147
Finsh unitest for repvgg.
zhangrui-wolf Aug 24, 2021
7c4940a
Fix bug about se in repvgg_to_mmcls.
zhangrui-wolf Aug 24, 2021
75c5841
Rename convert_repvggblock_param_to_deploy.py to reparameterize_repvg…
zhangrui-wolf Aug 26, 2021
82df784
test commit
Ezra-Yu Sep 1, 2021
2c94883
test commit
Ezra-Yu Sep 1, 2021
194830a
Merge branch 'repvgg' of https://github.com/zhangrui-wolf/mmclassific…
Ezra-Yu Sep 1, 2021
7b59cdc
test commit command
Ezra-Yu Sep 1, 2021
ea968eb
Modify repvgg.py to make the code more readable.
zhangrui-wolf Sep 5, 2021
cf321e2
Add value=0 in F.pad()
zhangrui-wolf Sep 5, 2021
e3237e4
Add se_cfg to arch_settings.
zhangrui-wolf Sep 5, 2021
84d5ef7
Fix bug.
zhangrui-wolf Sep 5, 2021
96b18c8
Merge branch 'master' into repvgg
zhangrui-wolf Sep 5, 2021
302bc78
modeify some attr name and Update unit tests
Ezra-Yu Sep 6, 2021
cbe225f
rename stage_0 to stem and branch_identity to branch_norm
Ezra-Yu Sep 6, 2021
dd86290
update unit tests
Ezra-Yu Sep 6, 2021
9c10d68
add m.eval in unit tests
Ezra-Yu Sep 6, 2021
a1d755e
[Enhance] Enhence SE layer to support custom squeeze channels. (#417)
Ezra-Yu Aug 20, 2021
4099816
[Docs] Add algorithm readme and update meta yml (#418)
mzr1996 Aug 24, 2021
474271a
[Enhance] Add `hparams` argument in `AutoAugment` and `RandAugment` a…
mzr1996 Aug 24, 2021
e800ffb
[Feature] Support classwise weight in losses (#388)
Ezra-Yu Aug 31, 2021
d3d797f
[Enhance] Better result visualization (#419)
mzr1996 Aug 31, 2021
decb54a
Bump version to v0.15.0 (#426)
mzr1996 Aug 31, 2021
69eb08f
[CI] Add PyTorch 1.9 and Python 3.9 build workflow, and remove some C…
mzr1996 Sep 1, 2021
dd3440f
[Enhance] Rename the option `--options` in some tools to `--cfg-optio…
mzr1996 Sep 1, 2021
0842a75
[Docs] Fix sphinx version (#429)
mzr1996 Sep 1, 2021
6518a0d
[Docs] Add `CITATION.cff` (#428)
mzr1996 Sep 1, 2021
1f49c95
modeify some attr name and Update unit tests
Ezra-Yu Sep 6, 2021
9545af0
rename stage_0 to stem and branch_identity to branch_norm
Ezra-Yu Sep 6, 2021
e4b577b
update unit tests
Ezra-Yu Sep 6, 2021
04c8827
add m.eval in unit tests
Ezra-Yu Sep 6, 2021
7c6c543
Update unit tests
Ezra-Yu Sep 7, 2021
24d348e
Update unit tests
Ezra-Yu Sep 7, 2021
8ff9d58
refactor
Ezra-Yu Sep 7, 2021
2af4038
Merge branch 'repvgg' of https://github.com/zhangrui-wolf/mmclassific…
Ezra-Yu Sep 7, 2021
3f2ac24
refactor
Ezra-Yu Sep 7, 2021
7be5b32
Alignment inference accuracy
Ezra-Yu Sep 8, 2021
c02a52f
Update configs, readme and metafile
Ezra-Yu Sep 9, 2021
09352a8
Update readme
Ezra-Yu Sep 9, 2021
9da9433
keep latest
Ezra-Yu Sep 16, 2021
7fe9618
return tuple and fix metafile
Ezra-Yu Sep 16, 2021
a6c08fa
fix unit test
Ezra-Yu Sep 17, 2021
2721e2c
rm regnet and classifiers changes
Ezra-Yu Sep 23, 2021
f7bc1ef
merge latest
Ezra-Yu Sep 23, 2021
131473c
update auto_aug
Ezra-Yu Sep 23, 2021
613cdaf
update metafile & readme
Ezra-Yu Sep 24, 2021
1752f99
use delattr
Ezra-Yu Sep 24, 2021
510d3d0
rename cfgs
Ezra-Yu Sep 24, 2021
16683af
Update checkpoint url
Ezra-Yu Sep 24, 2021
da7684d
Update readme
Ezra-Yu Sep 24, 2021
38b2e90
Rename config files.
mzr1996 Sep 24, 2021
fda4cfe
Update readme and metafile
mzr1996 Sep 24, 2021
a591742
add comment
Ezra-Yu Sep 25, 2021
14cd7c2
Update mmcls/models/backbones/repvgg.py
Ezra-Yu Sep 25, 2021
6276026
Update docstring
Ezra-Yu Sep 25, 2021
bf2b37a
Improve docstring.
mzr1996 Sep 28, 2021
0c04743
Update unittest_testblock
Ezra-Yu Sep 28, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 43 additions & 0 deletions configs/_base_/datasets/imagenet_bs64_autoaug.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
_base_ = ['./pipelines/auto_aug.py']

# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
96 changes: 96 additions & 0 deletions configs/_base_/datasets/pipelines/auto_aug.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
# Policy for ImageNet, refers to
# https://github.com/DeepVoltaire/AutoAugment/blame/master/autoaugment.py
policy_imagenet = [
[
dict(type='Posterize', bits=4, prob=0.4),
dict(type='Rotate', angle=30., prob=0.6)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
[
dict(type='Posterize', bits=5, prob=0.6),
dict(type='Posterize', bits=5, prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8)
],
[
dict(type='Solarize', thr=256 / 9 * 6, prob=0.6),
dict(type='Equalize', prob=0.6)
],
[dict(type='Posterize', bits=6, prob=0.8),
dict(type='Equalize', prob=1.)],
[
dict(type='Rotate', angle=10., prob=0.2),
dict(type='Solarize', thr=256 / 9, prob=0.6)
],
[
dict(type='Equalize', prob=0.6),
dict(type='Posterize', bits=5, prob=0.4)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0., prob=0.4)
],
[
dict(type='Rotate', angle=30., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[dict(type='Equalize', prob=0.0),
dict(type='Equalize', prob=0.8)],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0.2, prob=1.)
],
[
dict(type='ColorTransform', magnitude=0.8, prob=0.8),
dict(type='Solarize', thr=256 / 9 * 2, prob=0.8)
],
[
dict(type='Sharpness', magnitude=0.7, prob=0.4),
dict(type='Invert', prob=0.6)
],
[
dict(
type='Shear',
magnitude=0.3 / 9 * 5,
prob=0.6,
direction='horizontal'),
dict(type='Equalize', prob=1.)
],
[
dict(type='ColorTransform', magnitude=0., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
]
15 changes: 15 additions & 0 deletions configs/_base_/models/repvgg-A0_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='RepVGG',
arch='A0',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
23 changes: 23 additions & 0 deletions configs/_base_/models/repvgg-B3_lbs-mixup_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='RepVGG',
arch='B3',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2560,
loss=dict(
type='LabelSmoothLoss',
loss_weight=1.0,
label_smooth_val=0.1,
mode='classy_vision',
num_classes=1000),
topk=(1, 5),
),
train_cfg=dict(
augments=dict(type='BatchMixup', alpha=0.2, num_classes=1000,
prob=1.)))
11 changes: 11 additions & 0 deletions configs/_base_/schedules/imagenet_bs256_200e_coslr_warmup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=25025,
warmup_ratio=0.25)
runner = dict(type='EpochBasedRunner', max_epochs=200)
48 changes: 48 additions & 0 deletions configs/repvgg/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Repvgg: Making vgg-style convnets great again

## Introduction

mzr1996 marked this conversation as resolved.
Show resolved Hide resolved
<!-- [ALGORITHM] -->

```latex
@inproceedings{ding2021repvgg,
title={Repvgg: Making vgg-style convnets great again},
author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding, Guiguang and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13733--13742},
year={2021}
}
```

## Pretrain model

| Model | Epochs | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :---------: | :----: | :-------------------------------: | :-----------------------------: | :-------: | :-------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| RepVGG-A0 | 120 | 9.11(train) \| 8.31 (deploy) | 1.52 (train) \| 1.36 (deploy) | 72.41 | 90.50 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py) \| [config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth) |
| RepVGG-A1 | 120 | 14.09 (train) \| 12.79 (deploy) | 2.64 (train) \| 2.37 (deploy) | 74.47 | 91.85 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py) \| [config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth) |
| RepVGG-A2 | 120 | 28.21 (train) \| 25.5 (deploy) | 5.7 (train) \| 5.12 (deploy) | 76.48 | 93.01 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/masterconfigs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth) |
| RepVGG-B0 | 120 | 15.82 (train) \| 14.34 (deploy) | 3.42 (train) \| 3.06 (deploy) | 75.14 | 92.42 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth) |
| RepVGG-B1 | 120 | 57.42 (train) \| 51.83 (deploy) | 13.16 (train) \| 11.82 (deploy) | 78.37 | 94.11 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth) |
| RepVGG-B1g2 | 120 | 45.78 (train) \| 41.36 (deploy) | 9.82 (train) \| 8.82 (deploy) | 77.79 | 93.88 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth) |
| RepVGG-B1g4 | 120 | 39.97 (train) \| 36.13 (deploy) | 8.15 (train) \| 7.32 (deploy) | 77.58 | 93.84 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth) |
| RepVGG-B2 | 120 | 89.02 (train) \| 80.32 (deploy) | 20.46 (train) \| 18.39 (deploy) | 78.78 | 94.42 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth) |
| RepVGG-B2g4 | 200 | 61.76 (train) \| 55.78 (deploy) | 12.63 (train) \| 11.34 (deploy) | 79.38 | 94.68 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth) |
| RepVGG-B3 | 200 | 123.09 (train) \| 110.96 (deploy) | 29.17 (train) \| 26.22 (deploy) | 80.52 | 95.26 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth) |
| RepVGG-B3g4 | 200 | 83.83 (train) \| 75.63 (deploy) | 17.9 (train) \| 16.08 (deploy) | 80.22 | 95.10 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth) |
| RepVGG-D2se | 200 | 133.33 (train) \| 120.39 (deploy) | 36.56 (train) \| 32.85 (deploy) | 81.81 | 95.94 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth) |

## Reparameterize RepVGG

The checkpoints provided are all in `train` form. Use the reparameterize tool to switch them to more efficient `deploy` form, which not only has fewer parameters but also less calculations.

```bash
python ./tools/convert_models/reparameterize_repvgg.py ${CFG_PATH} ${SRC_CKPT_PATH} ${TARGET_CKPT_PATH}
```

`${CFG_PATH}` is the config file, `${SRC_CKPT_PATH}` is the source chenpoint file, `${TARGET_CKPT_PATH}` is the target deploy weight file path.

To use reparameterized repvgg weight, the config file must switch to [the deploy config files](./configs/repvgg/deploy) as below:

```bash
python ./tools/test.py ${RapVGG_Deploy_CFG} ${CHECK_POINT}
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-A0_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-A1_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-A2_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B0_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B1_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B1g2_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B1g4_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B2_4xb64-coslr-120e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'

model = dict(backbone=dict(deploy=True))
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'

model = dict(backbone=dict(deploy=True))
Loading