Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support resize relative position embedding in SwinTransformer. #749

Merged
merged 5 commits into from
Apr 13, 2022
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions mmcls/models/backbones/swin_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcv.runner.base_module import BaseModule, ModuleList
from mmcv.utils.parrots_wrapper import _BatchNorm
from scipy import interpolate

from ..builder import BACKBONES
from ..utils import ShiftWindowMSA, resize_pos_embed, to_2tuple
Expand Down Expand Up @@ -351,6 +352,7 @@ def __init__(self,
torch.zeros(1, num_patches, self.embed_dims))
self._register_load_state_dict_pre_hook(
self._prepare_abs_pos_embed)
self._register_load_state_dict_pre_hook(self._prepare_rel_pos_embed)

self.drop_after_pos = nn.Dropout(p=drop_rate)
self.norm_eval = norm_eval
Expand Down Expand Up @@ -499,3 +501,63 @@ def _prepare_abs_pos_embed(self, state_dict, prefix, *args, **kwargs):
pos_embed_shape,
self.interpolate_mode,
self.num_extra_tokens)

def _prepare_rel_pos_embed(self, state_dict, prefix, *args, **kwargs):
all_keys = list(state_dict.keys())
state_dict_model = self.state_dict()
for key in all_keys:
if 'relative_position_bias_table' in key:
relative_position_bias_table_pretrained = state_dict[key]
relative_position_bias_table_current = state_dict_model[key]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
YuanLiuuuuuu marked this conversation as resolved.
Show resolved Hide resolved
if L1 != L2:
src_size = int(L1**0.5)
dst_size = int(L2**0.5)

def geometric_progression(a, r, n):
return a * (1.0 - r**n) / (1.0 - r)

left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q

dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q**(i + 1)

r_ids = [-_ for _ in reversed(dis)]

x = r_ids + [0] + dis
y = r_ids + [0] + dis

t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)

all_rel_pos_bias = []

for i in range(nH1):
z = relative_position_bias_table_pretrained[:, i].view(
src_size, src_size).float().numpy()
f_cubic = interpolate.interp2d(x, y, z, kind='cubic')
all_rel_pos_bias.append(
torch.Tensor(f_cubic(dx,
dy)).contiguous().view(-1, 1).
to(relative_position_bias_table_pretrained.device))

new_rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
state_dict[key] = new_rel_pos_bias
YuanLiuuuuuu marked this conversation as resolved.
Show resolved Hide resolved

relative_position_index_keys = [
YuanLiuuuuuu marked this conversation as resolved.
Show resolved Hide resolved
k for k in state_dict.keys() if 'relative_position_index' in k
]
for k in relative_position_index_keys:
del state_dict[k]