Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enhance] Add extra dataloader settings in configs. #752

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 29 additions & 21 deletions mmcls/apis/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,20 +80,27 @@ def train_model(model,
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

sampler_cfg = cfg.data.get('sampler', None)

data_loaders = [
build_dataloader(
ds,
cfg.data.samples_per_gpu,
cfg.data.workers_per_gpu,
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
round_up=True,
seed=cfg.seed,
sampler_cfg=sampler_cfg) for ds in dataset
]
# The default loader config
loader_cfg = dict(
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
round_up=True,
seed=cfg.get('seed'),
sampler_cfg=cfg.get('sampler', None),
)
# The overall dataloader settings
loader_cfg.update({
k: v
for k, v in cfg.data.items() if k not in [
'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
'test_dataloader'
]
})
# The specific dataloader settings
train_loader_cfg = {**loader_cfg, **cfg.data.get('train_dataloader', {})}

data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]

# put model on gpus
if distributed:
Expand Down Expand Up @@ -169,13 +176,14 @@ def train_model(model,
# register eval hooks
if validate:
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
val_dataloader = build_dataloader(
val_dataset,
samples_per_gpu=cfg.data.samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
round_up=True)
# The specific dataloader settings
val_loader_cfg = {
**loader_cfg,
'shuffle': False, # Not shuffle by default
'sampler_cfg': None, # Not use sampler by default
**cfg.data.get('val_dataloader', {}),
}
val_dataloader = build_dataloader(val_dataset, **val_loader_cfg)
eval_cfg = cfg.get('evaluation', {})
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
eval_hook = DistEvalHook if distributed else EvalHook
Expand Down
32 changes: 24 additions & 8 deletions tools/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,16 +135,32 @@ def main():
distributed = True
init_dist(args.launcher, **cfg.dist_params)

# build the dataloader
dataset = build_dataset(cfg.data.test, default_args=dict(test_mode=True))
# the extra round_up data will be removed during gpu/cpu collect
data_loader = build_dataloader(
dataset,
samples_per_gpu=cfg.data.samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,

# build the dataloader
# The default loader config
loader_cfg = dict(
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False,
round_up=True)
round_up=True,
)
# The overall dataloader settings
loader_cfg.update({
k: v
for k, v in cfg.data.items() if k not in [
'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
'test_dataloader'
]
})
test_loader_cfg = {
**loader_cfg,
'shuffle': False, # Not shuffle by default
'sampler_cfg': None, # Not use sampler by default
**cfg.data.get('test_dataloader', {}),
}
# the extra round_up data will be removed during gpu/cpu collect
data_loader = build_dataloader(dataset, **test_loader_cfg)

# build the model and load checkpoint
model = build_classifier(cfg.model)
Expand Down