Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CodeCamp2023-154] Add semantic label to the segmentation visualization results #3229

Merged
merged 5 commits into from
Aug 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion mmseg/apis/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,7 @@ def show_result_pyplot(model: BaseSegmentor,
draw_pred: bool = True,
wait_time: float = 0,
show: bool = True,
withLabels: Optional[bool] = True,
save_dir=None,
out_file=None):
"""Visualize the segmentation results on the image.
Expand All @@ -177,10 +178,14 @@ def show_result_pyplot(model: BaseSegmentor,
that means "forever". Defaults to 0.
show (bool): Whether to display the drawn image.
Default to True.
withLabels(bool, optional): Add semantic labels in visualization
result, Default to True.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
out_file (str, optional): Path to output file. Default to None.



Returns:
np.ndarray: the drawn image which channel is RGB.
"""
Expand Down Expand Up @@ -208,7 +213,8 @@ def show_result_pyplot(model: BaseSegmentor,
draw_pred=draw_pred,
wait_time=wait_time,
out_file=out_file,
show=show)
show=show,
withLabels=withLabels)
vis_img = visualizer.get_image()

return vis_img
6 changes: 4 additions & 2 deletions mmseg/utils/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
# yapf: disable
from .class_names import (ade_classes, ade_palette, cityscapes_classes,
from .class_names import (ade_classes, ade_palette, bdd100k_classes,
bdd100k_palette, cityscapes_classes,
cityscapes_palette, cocostuff_classes,
cocostuff_palette, dataset_aliases, get_classes,
get_palette, isaid_classes, isaid_palette,
Expand All @@ -27,5 +28,6 @@
'cityscapes_palette', 'ade_palette', 'voc_palette', 'cocostuff_palette',
'loveda_palette', 'potsdam_palette', 'vaihingen_palette', 'isaid_palette',
'stare_palette', 'dataset_aliases', 'get_classes', 'get_palette',
'datafrombytes', 'synapse_palette', 'synapse_classes'
'datafrombytes', 'synapse_palette', 'synapse_classes', 'bdd100k_classes',
'bdd100k_palette'
]
85 changes: 76 additions & 9 deletions mmseg/visualization/local_visualizer.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional

import cv2
import mmcv
import numpy as np
import torch
from mmengine.dist import master_only
from mmengine.structures import PixelData
from mmengine.visualization import Visualizer
Expand Down Expand Up @@ -42,8 +44,8 @@ class SegLocalVisualizer(Visualizer):
>>> import numpy as np
>>> import torch
>>> from mmengine.structures import PixelData
>>> from mmseg.data import SegDataSample
>>> from mmseg.engine.visualization import SegLocalVisualizer
>>> from mmseg.structures import SegDataSample
>>> from mmseg.visualization import SegLocalVisualizer

>>> seg_local_visualizer = SegLocalVisualizer()
>>> image = np.random.randint(0, 256,
Expand All @@ -60,7 +62,7 @@ class SegLocalVisualizer(Visualizer):
>>> seg_local_visualizer.add_datasample(
... 'visualizer_example', image,
... gt_seg_data_sample, show=True)
""" # noqa
""" # noqa

def __init__(self,
name: str = 'visualizer',
Expand All @@ -76,9 +78,32 @@ def __init__(self,
self.alpha: float = alpha
self.set_dataset_meta(palette, classes, dataset_name)

def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
def _get_center_loc(self, mask: np.ndarray) -> np.ndarray:
"""Get semantic seg center coordinate.

Args:
mask: np.ndarray: get from sem_seg
"""
loc = np.argwhere(mask == 1)

loc_sort = np.array(
sorted(loc.tolist(), key=lambda row: (row[0], row[1])))
y_list = loc_sort[:, 0]
unique, indices, counts = np.unique(
y_list, return_index=True, return_counts=True)
y_loc = unique[counts.argmax()]
y_most_freq_loc = loc[loc_sort[:, 0] == y_loc]
center_num = len(y_most_freq_loc) // 2
x = y_most_freq_loc[center_num][1]
y = y_most_freq_loc[center_num][0]
return np.array([x, y])

def _draw_sem_seg(self,
image: np.ndarray,
sem_seg: PixelData,
classes: Optional[List],
palette: Optional[List]) -> np.ndarray:
palette: Optional[List],
withLabels: Optional[bool] = True) -> np.ndarray:
"""Draw semantic seg of GT or prediction.

Args:
Expand All @@ -94,6 +119,8 @@ def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
palette (list, optional): Input palette for result rendering, which
is a list of color palette responding to the classes.
Defaults to None.
withLabels(bool, optional): Add semantic labels in visualization
result, Default to True.

Returns:
np.ndarray: the drawn image which channel is RGB.
Expand All @@ -112,6 +139,43 @@ def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
for label, color in zip(labels, colors):
mask[sem_seg[0] == label, :] = color

if withLabels:
font = cv2.FONT_HERSHEY_SIMPLEX
# (0,1] to change the size of the text relative to the image
scale = 0.05
fontScale = min(image.shape[0], image.shape[1]) / (25 / scale)
fontColor = (255, 255, 255)
if image.shape[0] < 300 or image.shape[1] < 300:
thickness = 1
rectangleThickness = 1
else:
thickness = 2
rectangleThickness = 2
lineType = 2

if isinstance(sem_seg[0], torch.Tensor):
masks = sem_seg[0].numpy() == labels[:, None, None]
else:
masks = sem_seg[0] == labels[:, None, None]
masks = masks.astype(np.uint8)
for mask_num in range(len(labels)):
classes_id = labels[mask_num]
classes_color = colors[mask_num]
loc = self._get_center_loc(masks[mask_num])
text = classes[classes_id]
(label_width, label_height), baseline = cv2.getTextSize(
text, font, fontScale, thickness)
mask = cv2.rectangle(mask, loc,
(loc[0] + label_width + baseline,
loc[1] + label_height + baseline),
classes_color, -1)
mask = cv2.rectangle(mask, loc,
(loc[0] + label_width + baseline,
loc[1] + label_height + baseline),
(0, 0, 0), rectangleThickness)
mask = cv2.putText(mask, text, (loc[0], loc[1] + label_height),
font, fontScale, fontColor, thickness,
lineType)
color_seg = (image * (1 - self.alpha) + mask * self.alpha).astype(
np.uint8)
self.set_image(color_seg)
Expand All @@ -137,7 +201,7 @@ def set_dataset_meta(self,
visulizer will use the meta information of the dataset i.e.
classes and palette, but the `classes` and `palette` have
higher priority. Defaults to None.
""" # noqa
""" # noqa
# Set default value. When calling
# `SegLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
Expand All @@ -161,7 +225,8 @@ def add_datasample(
wait_time: float = 0,
# TODO: Supported in mmengine's Viusalizer.
out_file: Optional[str] = None,
step: int = 0) -> None:
step: int = 0,
withLabels: Optional[bool] = True) -> None:
"""Draw datasample and save to all backends.

- If GT and prediction are plotted at the same time, they are
Expand All @@ -187,6 +252,8 @@ def add_datasample(
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
step (int): Global step value to record. Defaults to 0.
withLabels(bool, optional): Add semantic labels in visualization
result, Defaults to True.
"""
classes = self.dataset_meta.get('classes', None)
palette = self.dataset_meta.get('palette', None)
Expand All @@ -202,7 +269,7 @@ def add_datasample(
'segmentation results.'
gt_img_data = self._draw_sem_seg(gt_img_data,
data_sample.gt_sem_seg, classes,
palette)
palette, withLabels)

if (draw_pred and data_sample is not None
and 'pred_sem_seg' in data_sample):
Expand All @@ -213,7 +280,7 @@ def add_datasample(
'segmentation results.'
pred_img_data = self._draw_sem_seg(pred_img_data,
data_sample.pred_sem_seg,
classes, palette)
classes, palette, withLabels)

if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
Expand Down