Skip to content

Commit

Permalink
[Docs] refine README.md file (#318)
Browse files Browse the repository at this point in the history
* refine README.md file

* fix lint

* format language button

* rename getting_started.md

* revise index.rst

* add model_zoo.md to index.rst

* fix lint

* refine readme

Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
  • Loading branch information
fangyixiao18 and Jiahao000 authored May 30, 2022
1 parent ced3196 commit 95058ba
Show file tree
Hide file tree
Showing 9 changed files with 86 additions and 214 deletions.
1 change: 1 addition & 0 deletions .github/CONTRIBUTING.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
We appreciate all contributions to improve MMSelfSup. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
79 changes: 40 additions & 39 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,14 @@

</div>

## Introduction
<div align="center">

English | [简体中文](README_zh-CN.md)

</div>

## Introduction

MMSelfSup is an open source self-supervised representation learning toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project.

The master branch works with **PyTorch 1.5** or higher.
Expand All @@ -59,11 +63,7 @@ The master branch works with **PyTorch 1.5** or higher.

Since MMSelfSup adopts similar design of modulars and interfaces as those in other OpenMMLab projects, it supports smooth evaluation on downstream tasks with other OpenMMLab projects like object detection and segmentation.

## License

This project is released under the [Apache 2.0 license](LICENSE).

## ChangeLog
## What's New

MMSelfSup **v0.9.0** was released in 29/04/2022.

Expand All @@ -76,17 +76,39 @@ Please refer to [changelog.md](docs/en/changelog.md) for details and release his

Differences between MMSelfSup and OpenSelfSup codebases can be found in [compatibility.md](docs/en/compatibility.md).

## Model Zoo and Benchmark
## Installation

MMSelfSup depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv) and [MMClassification](https://github.com/open-mmlab/mmclassification).

Please refer to [install.md](docs/en/install.md) for more detailed instruction.

## Get Started

Please refer to [prepare_data.md](docs/en/prepare_data.md) for dataset preparation and [get_started.md](docs/en/get_started.md) for the basic usage of MMSelfSup.

We also provides tutorials for more details:

- [config](docs/en/tutorials/0_config.md)
- [add new dataset](docs/en/tutorials/1_new_dataset.md)
- [data pipeline](docs/en/tutorials/2_data_pipeline.md)
- [add new module](docs/en/tutorials/3_new_module.md)
- [customize schedules](docs/en/tutorials/4_schedule.md)
- [customize runtime](docs/en/tutorials/5_runtime.md)
- [benchmarks](docs/en/tutorials/6_benchmarks.md)

Besides, we provide [colab tutorial](https://github.com/open-mmlab/mmselfsup/blob/master/demo/mmselfsup_colab_tutorial.ipynb) for basic usage.

Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.

### Model Zoo
## Model Zoo

Please refer to [model_zoo.md](docs/en/model_zoo.md) for a comprehensive set of pre-trained models and benchmarks.

Supported algorithms:

- [x] [Relative Location (ICCV'2015)](https://arxiv.org/abs/1505.05192)
- [x] [Rotation Prediction (ICLR'2018)](https://arxiv.org/abs/1803.07728)
- [x] [DeepCLuster (ECCV'2018)](https://arxiv.org/abs/1807.05520)
- [x] [DeepCluster (ECCV'2018)](https://arxiv.org/abs/1807.05520)
- [x] [NPID (CVPR'2018)](https://arxiv.org/abs/1805.01978)
- [x] [ODC (CVPR'2020)](https://arxiv.org/abs/2006.10645)
- [x] [MoCo v1 (CVPR'2020)](https://arxiv.org/abs/1911.05722)
Expand All @@ -104,7 +126,7 @@ Supported algorithms:

More algorithms are in our plan.

### Benchmark
## Benchmark

| Benchmarks | Setting |
| -------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
Expand All @@ -120,27 +142,16 @@ More algorithms are in our plan.
| Cityscapes Segmentation | [MMSeg](configs/benchmarks/mmsegmentation/cityscapes/fcn_r50-d8_769x769_40k_cityscapes.py) |
| PASCAL VOC12 Aug Segmentation | [MMSeg](configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py) |

## Installation

MMSelfSup depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv) and [MMClassification](https://github.com/open-mmlab/mmclassification).

Please refer to [install.md](docs/en/install.md) for more detailed instruction.

## Get Started
## Contributing

Please refer to [prepare_data.md](docs/en/prepare_data.md) for dataset preparation and [getting_started.md](docs/en/getting_started.md) for the basic usage of MMSelfSup.
We appreciate all contributions improving MMSelfSup. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for more details about the contributing guideline.

We also provides tutorials for more details:
## Acknowledgement

- [config](docs/en/tutorials/0_config.md)
- [add new dataset](docs/en/tutorials/1_new_dataset.md)
- [data pipeline](docs/en/tutorials/2_data_pipeline.md)
- [add new module](docs/en/tutorials/3_new_module.md)
- [customize schedules](docs/en/tutorials/4_schedule.md)
- [customize runtime](docs/en/tutorials/5_runtime.md)
- [benchmarks](docs/en/tutorials/6_benchmarks.md)
MMSelfSup is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new algorithms.

Besides, we provide [colab tutorial](https://github.com/open-mmlab/mmselfsup/blob/master/demo/mmselfsup_colab_tutorial.ipynb) for basic usage.
MMSelfSup originates from OpenSelfSup, and we appreciate all early contributions made to OpenSelfSup. A few contributors are listed here: Xiaohang Zhan ([@XiaohangZhan](http://github.com/XiaohangZhan)), Jiahao Xie ([@Jiahao000](https://github.com/Jiahao000)), Enze Xie ([@xieenze](https://github.com/xieenze)), Xiangxiang Chu ([@cxxgtxy](https://github.com/cxxgtxy)), Zijian He ([@scnuhealthy](https://github.com/scnuhealthy)).

## Citation

Expand All @@ -155,19 +166,9 @@ If you use this toolbox or benchmark in your research, please cite this project.
}
```

## Contributing

We appreciate all contributions improving MMSelfSup. Please refer to [CONTRIBUTING.md](docs/en/community/CONTRIBUTING.md) for more details about the contributing guideline.

## Acknowledgement

Remarks:
## License

- MMSelfSup originates from OpenSelfSup, and we appreciate all early contributions made to OpenSelfSup. A few contributors are listed here: Xiaohang Zhan, Jiahao Xie, Enze Xie, Xiangxiang Chu, Zijian He.
- The implementation of MoCo and the detection benchmark borrow the code from [MoCo](https://github.com/facebookresearch/moco).
- The implementation of SwAV borrows the code from [SwAV](https://github.com/facebookresearch/swav).
- The SVM benchmark borrows the code from [fair_self_supervision_benchmark](https://github.com/facebookresearch/fair_self_supervision_benchmark).
- `mmselfsup/utils/clustering.py` is borrowed from [deepcluster](https://github.com/facebookresearch/deepcluster/blob/master/clustering.py).
This project is released under the [Apache 2.0 license](LICENSE).

## Projects in OpenMMLab

Expand Down
68 changes: 36 additions & 32 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,14 @@

</div>

## 介绍
<div align="center">

[English](README.md) | 简体中文

</div>

## 介绍

MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱,是 [OpenMMLab](https://openmmlab.com/) 项目成员之一。

主分支代码支持 **PyTorch 1.5** 及以上的版本。
Expand All @@ -59,11 +63,7 @@ MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱

兼容 OpenMMLab 各大算法库,拥有丰富的下游评测任务和预训练模型的应用。

## 开源许可证

该项目采用 [Apache 2.0 开源许可证](LICENSE).

## 更新日志
## 更新

最新的 **v0.9.0** 版本已经在 2022.04.29 发布。

Expand All @@ -76,9 +76,31 @@ MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱

MMSelfSup 和 OpenSelfSup 的不同点写在 [对比文档](docs/en/compatibility.md) 中。

## 模型库和基准测试
## 安装

MMSelfSup 依赖 [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv)[MMClassification](https://github.com/open-mmlab/mmclassification).

请参考 [安装文档](docs/zh_cn/install.md) 获取更详细的安装指南。

## 快速入门

请参考 [准备数据](docs/zh_cn/prepare_data.md) 准备数据集和 [入门指南](docs/zh_cn/get_started.md) 获取 MMSelfSup 的基本使用方法.

我们也提供了更加全面的教程,包括:

- [配置文件](docs/zh_cn/tutorials/0_config.md)
- [添加数据集](docs/zh_cn/tutorials/1_new_dataset.md)
- [数据处理流](docs/zh_cn/tutorials/2_data_pipeline.md)
- [添加新模块](docs/zh_cn/tutorials/3_new_module.md)
- [自定义流程](docs/zh_cn/tutorials/4_schedule.md)
- [自定义运行](docs/zh_cn/tutorials/5_runtime.md)
- [基准测试](docs/zh_cn/tutorials/6_benchmarks.md)

另外,我们提供了 [colab 教程](https://github.com/open-mmlab/mmselfsup/blob/master/demo/mmselfsup_colab_tutorial.ipynb)

如果遇到问题,请参考 [常见问题解答](docs/zh_cn/faq.md)

### 模型库
## 模型库

请参考 [模型库](docs/zh_cn/model_zoo.md) 查看我们更加全面的模型基准结果。

Expand All @@ -104,7 +126,7 @@ MMSelfSup 和 OpenSelfSup 的不同点写在 [对比文档](docs/en/compatibilit

更多的算法实现已经在我们的计划中。

### 基准测试
## 基准测试

| 基准测试方法 | 参考设置 |
| -------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
Expand All @@ -120,31 +142,9 @@ MMSelfSup 和 OpenSelfSup 的不同点写在 [对比文档](docs/en/compatibilit
| Cityscapes Segmentation | [MMSeg](configs/benchmarks/mmsegmentation/cityscapes/fcn_r50-d8_769x769_40k_cityscapes.py) |
| PASCAL VOC12 Aug Segmentation | [MMSeg](configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py) |

## 安装

MMSelfSup 依赖 [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv)[MMClassification](https://github.com/open-mmlab/mmclassification).

请参考 [安装文档](docs/zh_cn/install.md) 获取更详细的安装指南。

## 快速入门

请参考 [准备数据](docs/zh_cn/prepare_data.md) 准备数据集和 [入门指南](docs/zh_cn/getting_started.md) 获取 MMSelfSup 的基本使用方法.

我们也提供了更加全面的教程,包括:

- [配置文件](docs/zh_cn/tutorials/0_config.md)
- [添加数据集](docs/zh_cn/tutorials/1_new_dataset.md)
- [数据处理流](docs/zh_cn/tutorials/2_data_pipeline.md)
- [添加新模块](docs/zh_cn/tutorials/3_new_module.md)
- [自定义流程](docs/zh_cn/tutorials/4_schedule.md)
- [自定义运行](docs/zh_cn/tutorials/5_runtime.md)
- [基准测试](docs/zh_cn/tutorials/6_benchmarks.md)

另外,我们提供了 [colab 教程](https://github.com/open-mmlab/mmselfsup/blob/master/demo/mmselfsup_colab_tutorial.ipynb)

## 参与贡献

我们非常欢迎任何有助于提升 MMSelfSup 的贡献,请参考 [贡献指南](docs/zh_cn/community/CONTRIBUTING.md) 来了解如何参与贡献。
我们非常欢迎任何有助于提升 MMSelfSup 的贡献,请参考 [贡献指南](.github/CONTRIBUTING.md) 来了解如何参与贡献。

## 致谢

Expand All @@ -165,6 +165,10 @@ MMSelfSup 是一款由不同学校和公司共同贡献的开源项目,我们
}
```

## 开源许可证

该项目采用 [Apache 2.0 开源许可证](LICENSE)

## OpenMMLab 的其他项目

- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
Expand Down
69 changes: 0 additions & 69 deletions docs/en/community/CONTRIBUTING.md

This file was deleted.

File renamed without changes.
6 changes: 4 additions & 2 deletions docs/en/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,9 @@ Welcome to MMSelfSup's documentation!
:caption: Get Started

install.md
getting_started.md
prepare_data.md
get_started.md
model_zoo.md

.. toctree::
:maxdepth: 1
Expand Down Expand Up @@ -51,8 +53,8 @@ Welcome to MMSelfSup's documentation!
:maxdepth: 1
:caption: Notes

community/CONTRIBUTING.md
changelog.md
compatibility.md

.. toctree::
:caption: Switch Language
Expand Down
Loading

0 comments on commit 95058ba

Please sign in to comment.