Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MMMU evals and runner #1442

Merged
merged 1 commit into from
Dec 21, 2023
Merged

Add MMMU evals and runner #1442

merged 1 commit into from
Dec 21, 2023

Conversation

etr2460
Copy link
Collaborator

@etr2460 etr2460 commented Dec 20, 2023

Eval details 📑

Eval name

MMMU

Eval description

A multi-modal version of MMLU published here: https://arxiv.org/pdf/2311.16502.pdf

What makes this a useful eval?

Tests a variety of subjects, along with image recognition and comprehension

Criteria for a good eval ✅

Below are some of the criteria we look for in a good eval. In general, we are seeking cases where the model does not do a good job despite being capable of generating a good response (note that there are some things large language models cannot do, so those would not make good evals).

Your eval should be:

  • Thematically consistent: The eval should be thematically consistent. We'd like to see a number of prompts all demonstrating some particular failure mode. For example, we can create an eval on cases where the model fails to reason about the physical world.
  • Contains failures where a human can do the task, but either GPT-4 or GPT-3.5-Turbo could not.
  • Includes good signal around what is the right behavior. This means either a correct answer for Basic evals or the Fact Model-graded eval, or an exhaustive rubric for evaluating answers for the Criteria Model-graded eval.
  • Include at least 15 high-quality examples.

If there is anything else that makes your eval worth including, please document it below.

Unique eval value

Multimodal, covers many subjects

Eval structure 🏗️

Your eval should

  • Check that your YAML is registered at evals/registry/evals/{name}.yaml
  • Ensure you have the right to use the data you submit via this eval

Eval JSON data

Dataset defined here: https://huggingface.co/datasets/MMMU/MMMU

Eval Results

on gpt-4-vision-preview:

{
  "mmmu-accounting": 0.5333333333333333,
  "mmmu-agriculture": 0.6333333333333333,
  "mmmu-architecture-and-engineering": 0.16666666666666666,
  "mmmu-art": 0.7333333333333333,
  "mmmu-art-theory": 0.8333333333333334,
  "mmmu-basic-medical-science": 0.6,
  "mmmu-biology": 0.43333333333333335,
  "mmmu-chemistry": 0.43333333333333335,
  "mmmu-clinical-medicine": 0.6333333333333333,
  "mmmu-computer-science": 0.6333333333333333,
  "mmmu-design": 0.7666666666666667,
  "mmmu-diagnostics-and-laboratory-medicine": 0.3,
  "mmmu-economics": 0.6333333333333333,
  "mmmu-electronics": 0.4,
  "mmmu-energy-and-power": 0.36666666666666664,
  "mmmu-finance": 0.43333333333333335,
  "mmmu-geography": 0.4,
  "mmmu-history": 0.6666666666666666,
  "mmmu-literature": 0.9,
  "mmmu-manage": 0.6,
  "mmmu-marketing": 0.6333333333333333,
  "mmmu-materials": 0.26666666666666666,
  "mmmu-math": 0.5,
  "mmmu-mechanical-engineering": 0.23333333333333334,
  "mmmu-music": 0.36666666666666664,
  "mmmu-pharmacy": 0.7666666666666667,
  "mmmu-physics": 0.43333333333333335,
  "mmmu-psychology": 0.7,
  "mmmu-public-health": 0.8,
  "mmmu-sociology": 0.5666666666666667
}
Average accuracy: 0.5455555555555556

Note that this is slightly lower than the MMMU paper's findings of 0.568. There's likely prompt engineering that could be done to improve this, but I'll leave that as an exercise for later

Copy link
Contributor

@logankilpatrick logankilpatrick left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Stamp!

@etr2460 etr2460 merged commit f20c305 into main Dec 21, 2023
2 checks passed
jacobbieker pushed a commit to withmartian/-ARCHIVED--router-evals that referenced this pull request Jan 9, 2024
## Eval details 📑

### Eval name

MMMU

### Eval description
A multi-modal version of MMLU published here:
https://arxiv.org/pdf/2311.16502.pdf

### What makes this a useful eval?
Tests a variety of subjects, along with image recognition and
comprehension

## Criteria for a good eval ✅

Below are some of the criteria we look for in a good eval. In general,
we are seeking cases where the model does not do a good job despite
being capable of generating a good response (note that there are some
things large language models cannot do, so those would not make good
evals).

Your eval should be:

- [x] Thematically consistent: The eval should be thematically
consistent. We'd like to see a number of prompts all demonstrating some
particular failure mode. For example, we can create an eval on cases
where the model fails to reason about the physical world.
- [x] Contains failures where a human can do the task, but either GPT-4
or GPT-3.5-Turbo could not.
- [x] Includes good signal around what is the right behavior. This means
either a correct answer for `Basic` evals or the `Fact` Model-graded
eval, or an exhaustive rubric for evaluating answers for the `Criteria`
Model-graded eval.
- [x] **Include at least 15 high-quality examples.**

If there is anything else that makes your eval worth including, please
document it below.

### Unique eval value

Multimodal, covers many subjects 

## Eval structure 🏗️

Your eval should

- [x] Check that your YAML is registered at
`evals/registry/evals/{name}.yaml`
- [x] Ensure you have the right to use the data you submit via this eval

### Eval JSON data

Dataset defined here: https://huggingface.co/datasets/MMMU/MMMU

### Eval Results

on `gpt-4-vision-preview`:

```
{
  "mmmu-accounting": 0.5333333333333333,
  "mmmu-agriculture": 0.6333333333333333,
  "mmmu-architecture-and-engineering": 0.16666666666666666,
  "mmmu-art": 0.7333333333333333,
  "mmmu-art-theory": 0.8333333333333334,
  "mmmu-basic-medical-science": 0.6,
  "mmmu-biology": 0.43333333333333335,
  "mmmu-chemistry": 0.43333333333333335,
  "mmmu-clinical-medicine": 0.6333333333333333,
  "mmmu-computer-science": 0.6333333333333333,
  "mmmu-design": 0.7666666666666667,
  "mmmu-diagnostics-and-laboratory-medicine": 0.3,
  "mmmu-economics": 0.6333333333333333,
  "mmmu-electronics": 0.4,
  "mmmu-energy-and-power": 0.36666666666666664,
  "mmmu-finance": 0.43333333333333335,
  "mmmu-geography": 0.4,
  "mmmu-history": 0.6666666666666666,
  "mmmu-literature": 0.9,
  "mmmu-manage": 0.6,
  "mmmu-marketing": 0.6333333333333333,
  "mmmu-materials": 0.26666666666666666,
  "mmmu-math": 0.5,
  "mmmu-mechanical-engineering": 0.23333333333333334,
  "mmmu-music": 0.36666666666666664,
  "mmmu-pharmacy": 0.7666666666666667,
  "mmmu-physics": 0.43333333333333335,
  "mmmu-psychology": 0.7,
  "mmmu-public-health": 0.8,
  "mmmu-sociology": 0.5666666666666667
}
Average accuracy: 0.5455555555555556
```

Note that this is slightly lower than the MMMU paper's findings of
`0.568`. There's likely prompt engineering that could be done to improve
this, but I'll leave that as an exercise for later
Linmj-Judy pushed a commit to TablewareBox/evals that referenced this pull request Feb 27, 2024
## Eval details 📑

### Eval name

MMMU

### Eval description
A multi-modal version of MMLU published here:
https://arxiv.org/pdf/2311.16502.pdf

### What makes this a useful eval?
Tests a variety of subjects, along with image recognition and
comprehension

## Criteria for a good eval ✅

Below are some of the criteria we look for in a good eval. In general,
we are seeking cases where the model does not do a good job despite
being capable of generating a good response (note that there are some
things large language models cannot do, so those would not make good
evals).

Your eval should be:

- [x] Thematically consistent: The eval should be thematically
consistent. We'd like to see a number of prompts all demonstrating some
particular failure mode. For example, we can create an eval on cases
where the model fails to reason about the physical world.
- [x] Contains failures where a human can do the task, but either GPT-4
or GPT-3.5-Turbo could not.
- [x] Includes good signal around what is the right behavior. This means
either a correct answer for `Basic` evals or the `Fact` Model-graded
eval, or an exhaustive rubric for evaluating answers for the `Criteria`
Model-graded eval.
- [x] **Include at least 15 high-quality examples.**

If there is anything else that makes your eval worth including, please
document it below.

### Unique eval value

Multimodal, covers many subjects 

## Eval structure 🏗️

Your eval should

- [x] Check that your YAML is registered at
`evals/registry/evals/{name}.yaml`
- [x] Ensure you have the right to use the data you submit via this eval

### Eval JSON data

Dataset defined here: https://huggingface.co/datasets/MMMU/MMMU

### Eval Results

on `gpt-4-vision-preview`:

```
{
  "mmmu-accounting": 0.5333333333333333,
  "mmmu-agriculture": 0.6333333333333333,
  "mmmu-architecture-and-engineering": 0.16666666666666666,
  "mmmu-art": 0.7333333333333333,
  "mmmu-art-theory": 0.8333333333333334,
  "mmmu-basic-medical-science": 0.6,
  "mmmu-biology": 0.43333333333333335,
  "mmmu-chemistry": 0.43333333333333335,
  "mmmu-clinical-medicine": 0.6333333333333333,
  "mmmu-computer-science": 0.6333333333333333,
  "mmmu-design": 0.7666666666666667,
  "mmmu-diagnostics-and-laboratory-medicine": 0.3,
  "mmmu-economics": 0.6333333333333333,
  "mmmu-electronics": 0.4,
  "mmmu-energy-and-power": 0.36666666666666664,
  "mmmu-finance": 0.43333333333333335,
  "mmmu-geography": 0.4,
  "mmmu-history": 0.6666666666666666,
  "mmmu-literature": 0.9,
  "mmmu-manage": 0.6,
  "mmmu-marketing": 0.6333333333333333,
  "mmmu-materials": 0.26666666666666666,
  "mmmu-math": 0.5,
  "mmmu-mechanical-engineering": 0.23333333333333334,
  "mmmu-music": 0.36666666666666664,
  "mmmu-pharmacy": 0.7666666666666667,
  "mmmu-physics": 0.43333333333333335,
  "mmmu-psychology": 0.7,
  "mmmu-public-health": 0.8,
  "mmmu-sociology": 0.5666666666666667
}
Average accuracy: 0.5455555555555556
```

Note that this is slightly lower than the MMMU paper's findings of
`0.568`. There's likely prompt engineering that could be done to improve
this, but I'll leave that as an exercise for later
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants