Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport 1.x] Add a working neural search sample #627

Merged
merged 1 commit into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
266 changes: 266 additions & 0 deletions samples/Samples/NeuralSearch/NeuralSearchSample.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
/* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/

using System.Diagnostics;
using OpenSearch.Client;
using OpenSearch.Net;

namespace Samples.NeuralSearch;

/// <summary>
/// Sample based off of the <a href="https://opensearch.org/docs/latest/search-plugins/neural-search-tutorial">Neural Search Tutorial</a>
/// </summary>
public class NeuralSearchSample : Sample
{
private const string SampleName = "neural-search";
private const string ResourceNamePrefix = "csharp-" + SampleName;
private const string MlModelGroupName = ResourceNamePrefix + "-model-group";
private const string IngestPipelineName = ResourceNamePrefix + "-ingest-pipeline";
private const string IndexName = ResourceNamePrefix + "-index";

private string? _modelGroupId;
private string? _modelRegistrationTaskId;
private string? _modelId;
private string? _modelDeployTaskId;
private bool _putIngestPipeline;
private bool _createdIndex;

public NeuralSearchSample() : base(SampleName, "A sample demonstrating how to perform a neural search query") { }

public class NeuralSearchDoc
{
[PropertyName("id")] public string? Id { get; set; }
[PropertyName("text")] public string? Text { get; set; }
[PropertyName("passage_embedding")] public float[]? PassageEmbedding { get; set; }
}

protected override async Task Run(IOpenSearchClient client)
{
// Temporarily configure the cluster to allow local running of the ML model
var putSettingsResp = await client.Cluster.PutSettingsAsync(s => s
.Transient(p => p
.Add("plugins.ml_commons.only_run_on_ml_node", false)
.Add("plugins.ml_commons.model_access_control_enabled", true)
.Add("plugins.ml_commons.native_memory_threshold", 99)));
Debug.Assert(putSettingsResp.IsValid, putSettingsResp.DebugInformation);
Console.WriteLine("Configured cluster to allow local execution of the ML model");

// Register an ML model group
var registerModelGroupResp = await client.Http.PostAsync<DynamicResponse>(
"/_plugins/_ml/model_groups/_register",
r => r.SerializableBody(new
{
name = MlModelGroupName,
description = $"A model group for the opensearch-net {SampleName} sample",
access_mode = "public"
}));
Debug.Assert(registerModelGroupResp.Success && (string) registerModelGroupResp.Body.status == "CREATED", registerModelGroupResp.DebugInformation);
Console.WriteLine($"Model group named {MlModelGroupName} {registerModelGroupResp.Body.status}: {registerModelGroupResp.Body.model_group_id}");
_modelGroupId = (string) registerModelGroupResp.Body.model_group_id;

// Register the ML model
var registerModelResp = await client.Http.PostAsync<DynamicResponse>(
"/_plugins/_ml/models/_register",
r => r.SerializableBody(new
{
name = "huggingface/sentence-transformers/msmarco-distilbert-base-tas-b",
version = "1.0.1",
model_group_id = _modelGroupId,
model_format = "TORCH_SCRIPT"
}));
Debug.Assert(registerModelResp.Success && (string) registerModelResp.Body.status == "CREATED", registerModelResp.DebugInformation);
Console.WriteLine($"Model registration task {registerModelResp.Body.status}: {registerModelResp.Body.task_id}");
_modelRegistrationTaskId = (string) registerModelResp.Body.task_id;

// Wait for ML model registration to complete
while (true)
{
var getTaskResp = await client.Http.GetAsync<DynamicResponse>($"/_plugins/_ml/tasks/{_modelRegistrationTaskId}");
Console.WriteLine($"Model registration: {getTaskResp.Body.state}");
Debug.Assert(getTaskResp.Success && (string) getTaskResp.Body.state != "FAILED", getTaskResp.DebugInformation);
if (((string)getTaskResp.Body.state).StartsWith("COMPLETED"))
{
_modelId = getTaskResp.Body.model_id;
break;
}
await Task.Delay(10000);
}
Console.WriteLine($"Model registered: {_modelId}");

// Deploy the ML model
var deployModelResp = await client.Http.PostAsync<DynamicResponse>($"/_plugins/_ml/models/{_modelId}/_deploy");
Debug.Assert(deployModelResp.Success && (string) deployModelResp.Body.status == "CREATED", deployModelResp.DebugInformation);
Console.WriteLine($"Model deployment task {deployModelResp.Body.status}: {deployModelResp.Body.task_id}");
_modelDeployTaskId = (string) deployModelResp.Body.task_id;

// Wait for ML model deployment to complete
while (true)
{
var getTaskResp = await client.Http.GetAsync<DynamicResponse>($"/_plugins/_ml/tasks/{_modelDeployTaskId}");
Console.WriteLine($"Model deployment: {getTaskResp.Body.state}");
Debug.Assert(getTaskResp.Success && (string) getTaskResp.Body.state != "FAILED", getTaskResp.DebugInformation);
if (((string)getTaskResp.Body.state).StartsWith("COMPLETED")) break;
await Task.Delay(10000);
}
Console.WriteLine($"Model deployed: {_modelId}");

// Create the text_embedding ingest pipeline
// TODO: Client does not yet contain typings for the text_embedding processor
var putIngestPipelineResp = await client.Http.PutAsync<PutPipelineResponse>(
$"/_ingest/pipeline/{IngestPipelineName}",
r => r.SerializableBody(new
{
description = $"A text_embedding ingest pipeline for the opensearch-net {SampleName} sample",
processors = new[]
{
new
{
text_embedding = new
{
model_id = _modelId,
field_map = new
{
text = "passage_embedding"
}
}
}
}
}));
Debug.Assert(putIngestPipelineResp.IsValid, putIngestPipelineResp.DebugInformation);
Console.WriteLine($"Put ingest pipeline {IngestPipelineName}: {putIngestPipelineResp.Acknowledged}");
_putIngestPipeline = true;

// Create the index
var createIndexResp = await client.Indices.CreateAsync(
IndexName,
i => i
.Settings(s => s
.Setting("index.knn", true)
.DefaultPipeline(IngestPipelineName))
.Map<NeuralSearchDoc>(m => m
.Properties(p => p
.Text(t => t.Name(d => d.Id))
.Text(t => t.Name(d => d.Text))
.KnnVector(k => k
.Name(d => d.PassageEmbedding)
.Dimension(768)
.Method(km => km
.Engine("lucene")
.SpaceType("l2")
.Name("hnsw"))))));
Debug.Assert(createIndexResp.IsValid, createIndexResp.DebugInformation);
Console.WriteLine($"Created index {IndexName}: {createIndexResp.Acknowledged}");
_createdIndex = true;

// Index some documents
var documents = new NeuralSearchDoc[]
{
new() { Id = "4319130149.jpg", Text = "A West Virginia university women 's basketball team , officials , and a small gathering of fans are in a West Virginia arena ." },
new() { Id = "1775029934.jpg", Text = "A wild animal races across an uncut field with a minimal amount of trees ." },
new() { Id = "2664027527.jpg", Text = "People line the stands which advertise Freemont 's orthopedics , a cowboy rides a light brown bucking bronco ." },
new() { Id = "4427058951.jpg", Text = "A man who is riding a wild horse in the rodeo is very near to falling off ." },
new() { Id = "2691147709.jpg", Text = "A rodeo cowboy , wearing a cowboy hat , is being thrown off of a wild white horse ." }
};
var bulkResp = await client.BulkAsync(b => b
.Index(IndexName)
.IndexMany(documents)
.Refresh(Refresh.WaitFor));
Debug.Assert(bulkResp.IsValid, bulkResp.DebugInformation);
Console.WriteLine($"Indexed {documents.Length} documents");

// Perform the neural search
// TODO: Client does not yet contain typings for neural query type
Console.WriteLine("Performing neural search for text 'wild west'");
var searchResp = await client.Http.PostAsync<SearchResponse<NeuralSearchDoc>>(
$"/{IndexName}/_search",
r => r.SerializableBody(new
{
_source = new { excludes = new[] { "passage_embedding" } },
query = new
{
neural = new
{
passage_embedding = new
{
query_text = "wild west",
model_id = _modelId,
k = 5
}
}
}
}));
Debug.Assert(searchResp.IsValid, searchResp.DebugInformation);
Console.WriteLine($"Found {searchResp.Hits.Count} documents");
foreach (var hit in searchResp.Hits) Console.WriteLine($"- Document id: {hit.Source.Id}, score: {hit.Score}, text: {hit.Source.Text}");
}

protected override async Task Cleanup(IOpenSearchClient client)
{
Console.WriteLine("\n\n-- CLEANING UP --");
if (_createdIndex)
{
// Cleanup the index
var deleteIndexResp = await client.Indices.DeleteAsync(IndexName);
Debug.Assert(deleteIndexResp.IsValid, deleteIndexResp.DebugInformation);
Console.WriteLine($"Deleted index: {deleteIndexResp.Acknowledged}");
}

if (_putIngestPipeline)
{
// Cleanup the ingest pipeline
var deleteIngestPipelineResp = await client.Ingest.DeletePipelineAsync(IngestPipelineName);
Debug.Assert(deleteIngestPipelineResp.IsValid, deleteIngestPipelineResp.DebugInformation);
Console.WriteLine($"Deleted ingest pipeline: {deleteIngestPipelineResp.Acknowledged}");
}

if (_modelDeployTaskId != null)
{
// Cleanup the model deployment task
var deleteModelDeployTaskResp = await client.Http.DeleteAsync<DynamicResponse>($"/_plugins/_ml/tasks/{_modelDeployTaskId}");
Debug.Assert(deleteModelDeployTaskResp.Success && (string) deleteModelDeployTaskResp.Body.result == "deleted", deleteModelDeployTaskResp.DebugInformation);
Console.WriteLine($"Deleted model deployment task: {deleteModelDeployTaskResp.Body.result}");
}

if (_modelId != null)
{
while (true)
{
// Try cleanup the ML model
var deleteModelResp = await client.Http.DeleteAsync<DynamicResponse>($"/_plugins/_ml/models/{_modelId}");
if (deleteModelResp.Success)
{
Console.WriteLine($"Deleted model: {deleteModelResp.Body.result}");
break;
}

Debug.Assert(((string?)deleteModelResp.Body.error?.reason)?.Contains("Try undeploy") ?? false, deleteModelResp.DebugInformation);

// Undeploy the ML model
var undeployModelResp = await client.Http.PostAsync<DynamicResponse>($"/_plugins/_ml/models/{_modelId}/_undeploy");
Debug.Assert(undeployModelResp.Success, undeployModelResp.DebugInformation);
Console.WriteLine("Undeployed model");
await Task.Delay(10000);
}
}

if (_modelRegistrationTaskId != null)
{
// Cleanup the model registration task
var deleteModelRegistrationTaskResp = await client.Http.DeleteAsync<DynamicResponse>($"/_plugins/_ml/tasks/{_modelRegistrationTaskId}");
Debug.Assert(deleteModelRegistrationTaskResp.Success && (string) deleteModelRegistrationTaskResp.Body.result == "deleted", deleteModelRegistrationTaskResp.DebugInformation);
Console.WriteLine($"Deleted model registration task: {deleteModelRegistrationTaskResp.Body.result}");
}

if (_modelGroupId != null)
{
// Cleanup the model group
var deleteModelGroupResp = await client.Http.DeleteAsync<DynamicResponse>($"/_plugins/_ml/model_groups/{_modelGroupId}");
Debug.Assert(deleteModelGroupResp.Success && (string) deleteModelGroupResp.Body.result == "deleted", deleteModelGroupResp.DebugInformation);
Console.WriteLine($"Deleted model group: {deleteModelGroupResp.Body.result}");
}
}
}
21 changes: 20 additions & 1 deletion samples/Samples/Sample.cs
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,29 @@ public Command AsCommand(IValueDescriptor<IOpenSearchClient> clientDescriptor)
{
var command = new Command(_name, _description);

command.SetHandler(Run, clientDescriptor);
command.SetHandler(async client =>
{
try
{
await Run(client);
}
finally
{
try
{
await Cleanup(client);
}
catch (Exception e)
{
await Console.Error.WriteLineAsync($"Cleanup Failed: {e}");
}
}
}, clientDescriptor);

return command;
}

protected abstract Task Run(IOpenSearchClient client);

protected virtual Task Cleanup(IOpenSearchClient client) => Task.CompletedTask;
}
Loading