Skip to content

Commit

Permalink
[GPU] Fix dynamic loop's not matched issue during multiple shapes are…
Browse files Browse the repository at this point in the history
… inferenced
  • Loading branch information
kelvinchoi-intel committed Mar 15, 2024
1 parent 6f8b70f commit 463ed96
Show file tree
Hide file tree
Showing 4 changed files with 199 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -503,6 +503,8 @@ void prepare_buffer_fusing::run(program& p) {
return;
if (user->is_type<loop>() || user->is_type<non_max_suppression>())
return;
}
for (auto user : node.get_users()) {
if (user->is_type<reshape>()) {
auto& reshape_node = user->as<reshape>();
if (can_reshape_be_optimized(reshape_node))
Expand Down
13 changes: 9 additions & 4 deletions src/plugins/intel_gpu/src/graph/loop.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -375,17 +375,22 @@ loop_inst::concatenated_memory_mapping::ptr loop_inst::create_concat_memory_map(
if (extern_mem_ptr != nullptr) {
layout sliced_layout = intern_prim->get_output_layout(internal_id.idx);
auto inter_mem_ptr = intern_prim->output_memory_ptr(internal_id.idx);
if (inter_mem_ptr == nullptr) {
if (inter_mem_ptr == nullptr || shape_changed()) {
// if inner body intern_prim has no output memory because it has dynamic shape,
// calculate inner body intern_prim layout using concat_mem's layout.
auto updated_sliced_layout = sliced_layout.get_partial_shape();
OPENVINO_ASSERT(updated_sliced_layout[io_prim_map.axis].is_static() || num_iterations > 0,
"Not allowed dynamic dimension for axis when num_iteraiont is negative");

auto origin_input_layout = body_network->get_primitive(internal_id.pid)->get_node_output_layout();
auto concat_pshape = extern_prim->get_output_layout().get_partial_shape();
const auto shape_size = concat_pshape.size();
for (size_t i = 0; i < shape_size; i++) {
if (updated_sliced_layout[i].is_dynamic()) {
updated_sliced_layout[i] = concat_pshape[i];
if (origin_input_layout.is_dynamic()) {
auto origin_input_pshape = origin_input_layout.get_partial_shape();
for (size_t i = 0; i < shape_size; i++) {
if (origin_input_pshape[i].is_dynamic()) {
updated_sliced_layout[i] = concat_pshape[i];
}
}
}
GPU_DEBUG_LOG << "output pshape for [" << intern_prim->id() << "] is changed from "
Expand Down
3 changes: 2 additions & 1 deletion src/plugins/intel_gpu/src/graph/reshape.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,8 @@ void reshape_inst::update_output_memory() {
if (!can_be_optimized())
return;

if (_outputs[0] && _network.get_engine().is_the_same_buffer(output_memory(), input_memory()))
if (_outputs[0] && _network.get_engine().is_the_same_buffer(output_memory(), input_memory()) &&
output_memory().get_layout() == _impl_params->get_output_layout())
return;

build_deps(); // reshape need deps
Expand Down
186 changes: 186 additions & 0 deletions src/plugins/intel_gpu/tests/unit/test_cases/loop_gpu_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,9 @@
#include "intel_gpu/primitives/eltwise.hpp"
#include <intel_gpu/primitives/data.hpp>
#include <intel_gpu/primitives/loop.hpp>
#include <intel_gpu/primitives/reshape.hpp>
#include <intel_gpu/primitives/reduce.hpp>
#include <intel_gpu/primitives/shape_of.hpp>
#include <intel_gpu/primitives/mutable_data.hpp>
#include <intel_gpu/primitives/data.hpp>
#include <intel_gpu/graph/program.hpp>
Expand Down Expand Up @@ -601,3 +604,186 @@ TEST(loop_gpu, support_dynamic_tensoriterator_outer_axis) {

test_loop_gpu_wo_trip_count({ 2, 1, 1, 2}, { 2, 5, 1, 2}, input_data_5_4, output_data_5_4, 1, 4);
}

static void test_loop_gpu_wo_trip_count_w_multiple_shapes(ov::PartialShape body_input_layout,
std::vector<ov::PartialShape> whole_layouts,
std::vector<std::vector<float>> input_data_list,
std::vector<float> expected_output_data,
size_t axis,
size_t exit_value,
bool is_caching_test = false) {
auto& engine = get_test_engine();

auto b_input_layout = cldnn::layout{ body_input_layout, data_types::f32, format::bfyx };

ov::PartialShape sliced_input_shape = body_input_layout;
sliced_input_shape[axis] = 1;
auto sliced_input_layout = cldnn::layout{ sliced_input_shape, data_types::f32, format::bfyx };

auto const_layout = cldnn::layout{ {}, data_types::i64, format::bfyx };

auto e_initial_condition_mem = engine.allocate_memory(const_layout);
auto e_num_iteration_mem = engine.allocate_memory(const_layout);
auto b_exit_value_mem = engine.allocate_memory(const_layout);
auto b_index_inc_mem = engine.allocate_memory(const_layout);

// initialize input buffers
set_values(e_initial_condition_mem, {1});
set_values(b_exit_value_mem, {exit_value});
set_values(b_index_inc_mem, {1});
set_values(e_num_iteration_mem, {0});

primitive_id body_current_iteration_id = "b_index";
primitive_id body_execution_condition_id = "b_cond_exit_value";

cldnn::topology body(
input_layout(body_current_iteration_id, const_layout),
input_layout("b_add_data", sliced_input_layout),
input_layout("b_mul_data", sliced_input_layout),
data("b_exit_value", b_exit_value_mem),
data("b_index_inc", b_index_inc_mem),
eltwise("b_index_update", input_info(body_current_iteration_id), input_info("b_index_inc"), eltwise_mode::sum),
reorder("b_index_cast", input_info("b_index_update"),
cldnn::format::any, data_types::f32, {}, cldnn::reorder_mean_mode::subtract, cldnn::padding(), true),
eltwise(body_execution_condition_id, input_info("b_index"), input_info("b_exit_value"), eltwise_mode::lt),
eltwise("b_add", input_info("b_add_data"), input_info("b_index_cast"), eltwise_mode::sum),
eltwise("b_mul", input_info("b_mul_data"), input_info("b_index_cast"), eltwise_mode::prod));

primitive_id trip_count_id = "";
primitive_id actual_iteration_count_id = "actual_iteration_count";
primitive_id initial_condition_id = "initial_condition";
int64_t num_iterations = -1;

std::vector<loop::io_primitive_map> input_primitive_maps {
loop::io_primitive_map("input", "b_add_data", axis),
loop::io_primitive_map("input", "b_mul_data", axis),
loop::io_primitive_map(actual_iteration_count_id, body_current_iteration_id) };
std::vector<loop::io_primitive_map> output_primitive_maps {
loop::io_primitive_map(cldnn::input_info("loop", 0), cldnn::input_info("b_add", 0), axis),
loop::io_primitive_map(cldnn::input_info("loop", 1), cldnn::input_info("b_mul", 0), axis) };
std::vector<loop::backedge_mapping> back_edges {
loop::backedge_mapping("b_index_update", body_current_iteration_id) };

auto body_program = build_program(engine, body, body_execution_condition_id, output_primitive_maps, back_edges, true);

auto const_shape = engine.allocate_memory({ov::PartialShape{4}, data_types::i32, format::bfyx});
std::vector<int32_t> body_input_layouts;
for (size_t i = 0; i < body_input_layout.size(); i++) {
if (body_input_layout[i].is_dynamic())
body_input_layouts.push_back(-1);
else
body_input_layouts.push_back(body_input_layout[i].get_length());
}
set_values<int32_t>(const_shape, body_input_layouts);

cldnn::topology topology(
input_layout("input_origin", b_input_layout),
input_layout(initial_condition_id, e_initial_condition_mem->get_layout()),
mutable_data(actual_iteration_count_id, e_num_iteration_mem),

shape_of("shape_of_input", input_info("input_origin"), data_types::i32),
reduce("reduced_shape", input_info("shape_of_input"), reduce_mode::prod, {0}, true),
reshape("reshape1", input_info("input_origin"), input_info("reduced_shape"), false, ov::PartialShape::dynamic(1)),
data("const", const_shape),
reshape("input", input_info("reshape1"), input_info("const"), false, ov::PartialShape::dynamic(4)),

loop("loop", { input_info(actual_iteration_count_id), input_info(initial_condition_id), input_info("input") }, body_program,
trip_count_id, initial_condition_id, actual_iteration_count_id,
input_primitive_maps, output_primitive_maps, back_edges,
num_iterations, body_current_iteration_id, body_execution_condition_id, 2),
eltwise("out_sum", input_info("loop", 0), input_info("loop", 1), eltwise_mode::sum));

ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::allow_new_shape_infer(true));

cldnn::network::ptr network = get_network(engine, topology, config, get_test_stream_ptr(), is_caching_test);

for (size_t i = 0 ; i < whole_layouts.size(); i++) {
auto whole_layout = whole_layouts[i];
auto input_data = input_data_list[i];

// initialize input buffers
set_values(e_initial_condition_mem, {1});
set_values(b_exit_value_mem, {exit_value});
set_values(b_index_inc_mem, {1});
set_values(e_num_iteration_mem, {0});

auto e_input_layout = cldnn::layout{ whole_layout, data_types::f32, format::bfyx };
auto e_input_mem = engine.allocate_memory(e_input_layout); // b,f,x,y
auto expected_output_layout = whole_layout;
set_values(e_input_mem, input_data);
network->set_input_data("input_origin", e_input_mem);

network->set_input_data(initial_condition_id, e_initial_condition_mem);

auto outputs = network->execute();
ASSERT_EQ(outputs.size(), 1);

auto expected_num_iterations = (exit_value + 1);
expected_output_layout[axis] = expected_num_iterations;
auto e_output_layout = cldnn::layout{ expected_output_layout, data_types::f32, format::bfyx };

auto num_iter_mem = network->get_output_memory(actual_iteration_count_id);
if (num_iter_mem != nullptr) {
mem_lock<int64_t> num_iter_ptr{ num_iter_mem, get_test_stream() };
ASSERT_EQ(num_iter_ptr.data()[0], expected_num_iterations);
}

std::vector<float> expected(input_data.size());
if (expected_output_data.size() == 0) {
size_t unit = 1;
for (size_t k = axis; k < whole_layout.size(); k++) {
unit *= whole_layout[k].get_length();
}

for (size_t j = 0; j < input_data.size(); j++) {
auto val = static_cast<size_t>((j % unit) / 4) + 1;
expected[j] = static_cast<float>(input_data[j] + val) + static_cast<float>(input_data[j] * val);
}
} else {
expected = expected_output_data;
}

auto output_mem = outputs.begin()->second.get_memory();
auto output_layout = output_mem->get_layout();
ASSERT_EQ(output_layout.batch(), e_output_layout.batch());
ASSERT_EQ(output_layout.feature(), e_output_layout.feature());
ASSERT_EQ(output_layout.spatial(0), e_output_layout.spatial(0));
ASSERT_EQ(output_layout.spatial(1), e_output_layout.spatial(1));
// value check
{
mem_lock<float> output_ptr{ output_mem, get_test_stream() };
for (size_t i = 0, iend = output_layout.count(); i < iend; ++i) {
ASSERT_FLOAT_EQ(output_ptr[i], expected.at(i));
}
}
}
}

std::vector<float> input_data_4_4{
1.0f, 2.0f, -15.f, 3.0f,
4.0f, -15.f, 5.0f, 6.0f,
-15.f, 7.0f, -15.f, 0.0f,
0.0f, -15.f, 0.5f, -0.5f,
};

std::vector<float> input_data_2_4_4{
1.0f, 2.0f, -15.f, 3.0f,
4.0f, -15.f, 5.0f, 6.0f,
-15.f, 7.0f, -15.f, 0.0f,
0.0f, -15.f, 0.5f, -0.5f,

1.0f, 2.0f, -15.f, 3.0f,
4.0f, -15.f, 5.0f, 6.0f,
-15.f, 7.0f, -15.f, 0.0f,
0.0f, -15.f, 0.5f, -0.5f,
};

TEST(loop_gpu, support_loop_w_dynamic_input_w_various_shapes) {
test_loop_gpu_wo_trip_count_w_multiple_shapes(
{ 1, -1, 4, 4 },
{{ 1, 1, 4, 4 }, { 1, 2, 4, 4 }}, // axis value should be iter_num = (exit_value + 1)
{input_data_4_4, input_data_2_4_4},
std::vector<float>(),
2, 3);
}

0 comments on commit 463ed96

Please sign in to comment.