-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
Showing
3 changed files
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
// Copyright (C) 2018-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include "openvino/op/bucketize.hpp" | ||
|
||
#include "openvino/frontend/pytorch/node_context.hpp" | ||
#include "openvino/op/add.hpp" | ||
#include "openvino/op/concat.hpp" | ||
#include "openvino/op/convert_like.hpp" | ||
#include "openvino/op/logical_or.hpp" | ||
#include "openvino/op/multiply.hpp" | ||
#include "utils.hpp" | ||
|
||
namespace ov { | ||
namespace frontend { | ||
namespace pytorch { | ||
namespace op { | ||
|
||
using namespace ov::op; | ||
|
||
OutputVector translate_bucketize(const NodeContext& context) { | ||
num_inputs_check(context, 2, 5); | ||
auto input = context.get_input(0); | ||
auto boundaries = context.get_input(1); | ||
|
||
element::Type output_type = ov::element::i64; | ||
if (!context.input_is_none(2) && context.const_input<bool>(2)) { | ||
output_type = ov::element::i32; | ||
} | ||
|
||
bool with_right_bound = true; | ||
if (!context.input_is_none(3)) { | ||
with_right_bound = !context.const_input<bool>(3); | ||
} | ||
|
||
auto bucketize = | ||
context.mark_node(std::make_shared<v3::Bucketize>(input, boundaries, output_type, with_right_bound)); | ||
|
||
if (!context.input_is_none(4)) { | ||
context.mutate_input(4, bucketize); | ||
} | ||
|
||
return {bucketize}; | ||
}; | ||
|
||
} // namespace op | ||
} // namespace pytorch | ||
} // namespace frontend | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Copyright (C) 2018-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
|
||
from pytorch_layer_test_class import PytorchLayerTest | ||
|
||
|
||
class TestBucketize(PytorchLayerTest): | ||
|
||
def _prepare_input(self, input_shape, boundaries_range, input_dtype, boundaries_dtype): | ||
return ( | ||
np.random.randn(*input_shape).astype(input_dtype), | ||
np.arange(*boundaries_range).astype(boundaries_dtype)) | ||
|
||
def create_model(self, out_int32, right, is_out): | ||
class aten_bucketize(torch.nn.Module): | ||
|
||
def __init__(self, out_int32, right, is_out) -> None: | ||
super().__init__() | ||
self.out_int32 = out_int32 | ||
self.right = right | ||
self.is_out = is_out | ||
|
||
def forward(self, input, boundaries): | ||
if self.is_out: | ||
output_dtype = torch.int32 if self.out_int32 else torch.int64 | ||
output = torch.zeros_like(input, dtype=output_dtype) | ||
torch.bucketize(input, boundaries, out_int32=self.out_int32, right=self.right, out=output) | ||
return output | ||
else: | ||
return torch.bucketize(input, boundaries, out_int32=self.out_int32, right=self.right) | ||
|
||
ref_net = None | ||
|
||
return aten_bucketize(out_int32, right, is_out), ref_net, "aten::bucketize" | ||
|
||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
@pytest.mark.parametrize("out_int32", [True, False]) | ||
@pytest.mark.parametrize("right", [True, False]) | ||
@pytest.mark.parametrize("is_out", [True, False]) | ||
@pytest.mark.parametrize("input_shape", [[1, ], [2, 1], [2, 2, 1]]) | ||
@pytest.mark.parametrize("input_dtype", ["float32", "int32"]) | ||
@pytest.mark.parametrize("boundaries_range", [[1, 10], (100, 200)]) | ||
@pytest.mark.parametrize("boundaries_dtype", ["float32", "int32"]) | ||
def test_bucketize(self, input_shape, boundaries_range, input_dtype, boundaries_dtype, out_int32, right, is_out, ie_device, precision, ir_version): | ||
self._test(*self.create_model(out_int32, right, is_out), ie_device, precision, ir_version, kwargs_to_prepare_input={ | ||
"input_shape": input_shape, "input_dtype": input_dtype, | ||
"boundaries_range": boundaries_range, "boundaries_dtype": boundaries_dtype, | ||
}) |