Skip to content

Commit

Permalink
[Specification] MaxPool-14 and AvgPool-14 - new ceiling mode `CEIL_TO…
Browse files Browse the repository at this point in the history
…RCH` (#22930)

### Details:
 - Add specification for `MaxPool-14` and `AvgPool-14`
- They both introduce a new ceil mode:
`ov::op::RoundingType::CEIL_TORCH`
- The new ceiling mode does not allow the last pooling in a Dimension to
start in the padding area

### Related PRs
- [Reference and
Core](#22796)
 - [Python API](#22966)
 - [PT FE](#23027)
- [Downgrade
transformations](#23381)

### Tickets:
 - 131961

### Context
#18731

---------

Co-authored-by: Tomasz Jankowski <tomasz1.jankowski@intel.com>
Co-authored-by: Katarzyna Mitrus <katarzyna.mitrus@intel.com>
  • Loading branch information
3 people authored Mar 18, 2024
1 parent c208a88 commit ec4d00a
Show file tree
Hide file tree
Showing 5 changed files with 618 additions and 2 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ Table of Contents
* :doc:`Assign <../operation-specs/infrastructure/assign-3>`
* :doc:`Atan <../operation-specs/arithmetic/atan-1>`
* :doc:`Atanh <../operation-specs/arithmetic/atanh-3>`
* :doc:`AvgPool <../operation-specs/pooling/avg-pool-1>`
* :doc:`AvgPool <../operation-specs/pooling/avg-pool-14>`
* :doc:`BatchNormInference <../operation-specs/normalization/batch-norm-inference-5>`
* :doc:`BatchToSpace <../operation-specs/movement/batch-to-space-2>`
* :doc:`BinaryConvolution <../operation-specs/convolution/binary-convolution-1>`
Expand Down Expand Up @@ -120,7 +120,7 @@ Table of Contents
* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>`
* :doc:`MatMul <../operation-specs/matrix/matmul-1>`
* :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>`
* :doc:`MaxPool <../operation-specs/pooling/max-pool-8>`
* :doc:`MaxPool <../operation-specs/pooling/max-pool-14>`
* :doc:`Maximum <../operation-specs/arithmetic/maximum-1>`
* :doc:`Minimum <../operation-specs/arithmetic/minimum-1>`
* :doc:`Mish <../operation-specs/activation/mish-4>`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ Operation Specifications
Atan-1 <operation-specs/arithmetic/atan-1>
Atanh-3 <operation-specs/arithmetic/atanh-3>
AvgPool-1 <operation-specs/pooling/avg-pool-1>
AvgPool-14 <operation-specs/pooling/avg-pool-14>
BatchNormInference-1 <operation-specs/normalization/batch-norm-inference-1>
BatchNormInference-5 <operation-specs/normalization/batch-norm-inference-5>
BatchToSpace-2 <operation-specs/movement/batch-to-space-2>
Expand Down Expand Up @@ -127,6 +128,7 @@ Operation Specifications
MatrixNms-8 <operation-specs/sort/matrix-non-max-suppression-8>
MaxPool-1 <operation-specs/pooling/max-pool-1>
MaxPool-8 <operation-specs/pooling/max-pool-8>
MaxPool-14 <operation-specs/pooling/max-pool-14>
Maximum-1 <operation-specs/arithmetic/maximum-1>
Minimum-1 <operation-specs/arithmetic/minimum-1>
Mish-4 <operation-specs/activation/mish-4>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
.. {#openvino_docs_ops_pooling_AvgPool_14}
AvgPool
=======


.. meta::
:description: Learn about AvgPool-14 - a pooling operation, which can
be performed on a 3D, 4D or 5D input tensor.

**Versioned name**: *AvgPool-14*

**Category**: *Pooling*

**Short description**: Performs the average pooling operation on input.

**Detailed description**: `Reference <http://cs231n.github.io/convolutional-networks/#pool>`__. Average Pool is a pooling operation that performs down-sampling by dividing the input into pooling regions of size specified by kernel attribute and computing the average values of each region.

**Attributes**: *Pooling* attributes are specified in the ``data`` node, which is a child of the layer node.

* *strides*

* **Description**: *strides* is a distance (in pixels) to slide the window on the feature map over the (z, y, x) axes for 3D poolings and (y, x) axes for 2D poolings. For example, *strides* equal "4,2,1" means sliding the window 4 pixel at a time over depth dimension, 2 over height dimension and 1 over width dimension.
* **Range of values**: integer values starting from 0
* **Type**: int[]
* **Required**: *yes*

* *pads_begin*

* **Description**: *pads_begin* is a number of pixels to add to the beginning along each axis. For example, *pads_begin* equal "1,2" means adding 1 pixel to the top of the input and 2 to the left of the input.
* **Range of values**: integer values starting from 0
* **Type**: int[]
* **Required**: *yes*
* **Note**: the attribute is ignored when *auto_pad* attribute is specified.

* *pads_end*

* **Description**: *pads_end* is a number of pixels to add to the ending along each axis. For example, *pads_end* equal "1,2" means adding 1 pixel to the bottom of the input and 2 to the right of the input.
* **Range of values**: integer values starting from 0
* **Type**: int[]
* **Required**: *yes*
* **Note**: the attribute is ignored when *auto_pad* attribute is specified.

* *kernel*

* **Description**: *kernel* is a size of each filter. For example, *kernel* equal (2, 3) means that each filter has height equal to 2 and width equal to 3.
* **Range of values**: integer values starting from 1
* **Type**: int[]
* **Required**: *yes*

* *exclude-pad*

* **Description**: *exclude-pad* is a type of pooling strategy for values in the padding area. For example, if *exclude-pad* is "true", then zero-values that came from padding are not included in averaging calculation.
* **Range of values**: true or false
* **Type**: boolean
* **Required**: *yes*

* *rounding_type*

* **Description**: *rounding_type* is a type of rounding to be applied. *ceil_torch* does not allow the last pooling to start in the padding area.
* **Range of values**:
* *floor*
* *ceil*
* *ceil_torch*
* **Type**: string
* **Default value**: *floor*
* **Required**: *no*

* *auto_pad*

* **Description**: *auto_pad* how the padding is calculated. Possible values:

* *explicit*: use explicit padding values from `pads_begin` and `pads_end`.
* *same_upper (same_lower)* the input is padded to match the output size. In case of odd padding value an extra padding is added at the end (at the beginning).
* *valid* - do not use padding.
* **Type**: string
* **Default value**: *explicit*
* **Required**: *no*
* **Note**: *pads_begin* and *pads_end* attributes are ignored when *auto_pad* is specified.

**Input**:

* **1**: 3D, 4D or 5D input tensor. Input shape can be either ``[N, C, H]``, ``[N, C, H, W]`` or ``[N, C, H, W, D]``. **Required.**

**Output**:

* **1**: The output shape is ``[N, C, H_out]``, ``[N, C, H_out, W_out]`` or ``[N, C, H_out, W_out, D_out]``. Output shape calculation rules and examples can be found in :doc:`Pooling Operators shape inference rules <pooling_shape_rules>`.

**Types**

* *T*: floating point or integer type.

* *T_IND*: ``int64`` or ``int32``.


**Examples**

.. code-block:: xml
:force:
<layer ... type="AvgPool" ... >
<data auto_pad="same_upper" exclude-pad="true" kernel="2,2" pads_begin="0,0" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</output>
</layer>
<layer ... type="AvgPool" ... >
<data auto_pad="same_upper" exclude-pad="false" kernel="5,5" pads_begin="0,0" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</output>
</layer>
<layer ... type="AvgPool" ... >
<data auto_pad="explicit" exclude-pad="true" kernel="5,5" pads_begin="1,1" pads_end="1,1" strides="3,3"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>10</dim>
<dim>10</dim>
</port>
</output>
</layer>
<layer ... type="AvgPool" ... >
<data auto_pad="explicit" exclude-pad="false" kernel="5,5" pads_begin="1,1" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>15</dim>
<dim>15</dim>
</port>
</output>
</layer>
<layer ... type="AvgPool" ... >
<data auto_pad="valid" exclude-pad="true" kernel="5,5" pads_begin="1,1" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>32</dim>
<dim>32</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
Loading

0 comments on commit ec4d00a

Please sign in to comment.