Skip to content

Commit

Permalink
Merge branch 'dev'
Browse files Browse the repository at this point in the history
  • Loading branch information
BykadorovR committed Apr 28, 2020
2 parents 0072af2 + e385e3d commit 0827723
Show file tree
Hide file tree
Showing 13 changed files with 180 additions and 51 deletions.
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
FROM nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04

RUN apt-get update &&\
apt-get -y install build-essential yasm nasm cmake unzip git wget \
Expand Down
15 changes: 7 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,13 @@ reader.initialize()
reader.start()

while need_predictions:
# read the latest available frame from the stream
# read the latest available frame from the stream
tensor = reader.read(pixel_format=FourCC.BGR24,
width=256, # resize to 256x256 px
height=256,
normalization=True, # normalize to range [0, 1]
planes_pos=Planes.PLANAR) # dimension order [C, H, W]

# tensor dtype is torch.float32, device is 'cuda:0', shape is (3, 256, 256)
prediction = model(tensor.unsqueeze(0))
```
Expand Down Expand Up @@ -102,15 +102,15 @@ Extension for Python can be installed via pip:
- **CUDA 10:**
TensorStream compiled with different versions of Pytorch:
```
pip install https://tensorstream.argus-ai.com/wheel/cu10/torch1.3.1/linux/tensor_stream-0.3.0-cp36-cp36m-linux_x86_64.whl
pip install https://tensorstream.argus-ai.com/wheel/cu10/torch1.4.0/linux/tensor_stream-0.4.0-cp36-cp36m-linux_x86_64.whl
```
```
pip install https://tensorstream.argus-ai.com/wheel/cu10/torch1.4.0/linux/tensor_stream-0.3.0-cp36-cp36m-linux_x86_64.whl
pip install https://tensorstream.argus-ai.com/wheel/cu10/torch1.5.0/linux/tensor_stream-0.4.0-cp36-cp36m-linux_x86_64.whl
```

#### Building examples and tests
Examples for Python and C++ can be found in [c_examples](c_examples) and [python_examples](python_examples) folders. Tests for C++ can be found in [tests](tests) folder.
#### Python example
#### Python example
Can be executed via Python after TensorStream [C++ extension for Python](#c-extension-for-python) installation.
```
cd python_examples
Expand All @@ -136,7 +136,7 @@ cmake -DCMAKE_PREFIX_PATH=%cd%\..\..\cmake -G "Visual Studio 15 2017 Win64" -T v
## Docker image
To build TensorStream need to pass Pytorch version via TORCH_VERSION argument:
```
docker build --build-arg TORCH_VERSION=1.4.0 -t tensorstream .
docker build --build-arg TORCH_VERSION=1.5.0 -t tensorstream .
```
Run with a bash command line and follow the [installation guide](#install-tensorstream)
```
Expand All @@ -155,7 +155,7 @@ docker run --gpus=all -ti tensorstream bash
1. Simple [example](python_examples/simple.py) demonstrates RTMP to PyTorch tensor conversion. Let's consider some usage scenarios:
> **Note:** You can pass **--help** to get the list of all available options, their description and default values
* Convert an RTMP bitstream to RGB24 PyTorch tensors and dump the result to a dump.yuv file:
* Convert an RTMP bitstream to RGB24 PyTorch tensors and dump the result to a dump.yuv file:
```
python simple.py -i rtmp://37.228.119.44:1935/vod/big_buck_bunny.mp4 -fc RGB24 -o dump
```
Expand Down Expand Up @@ -223,7 +223,6 @@ python different_streams.py -i1 <path-to-first-stream> -i2 <path-to-second-strea

Real-time video style transfer example: [fast-neural-style](python_examples/fast_neural_style).


## Documentation

Documentation for Python and C++ API can be found on the [site](https://tensorstream.argus-ai.com/).
Expand Down
3 changes: 2 additions & 1 deletion include/Common.h
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@ enum CloseLevel {
@details Used in @ref TensorStream::initPipeline() function
*/
enum FrameRateMode {
NATIVE, /**< Read at native stream/camera frame rate */
NATIVE, /**< Read at native stream frame rate */
NATIVE_SIMPLE, /**< Read at fixed stream frame rate */
FAST, /**< Read frames as fast as possible */
BLOCKING /**< Read frame by frame without skipping (only local files) */
};
Expand Down
2 changes: 2 additions & 0 deletions include/Wrappers/WrapperC.h
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@ class TensorStream {
std::shared_ptr<VideoProcessor> vpp;
AVPacket* parsed;
int realTimeDelay = 0;
double indexToDTSCoeff = 0;
double DTSToMsCoeff = 0;
std::pair<int, int> frameRate;
FrameRateMode frameRateMode;
bool shouldWork;
Expand Down
2 changes: 2 additions & 0 deletions include/Wrappers/WrapperPython.h
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@ class TensorStream {
std::shared_ptr<VideoProcessor> vpp;
AVPacket* parsed;
int realTimeDelay = 0;
double indexToDTSCoeff = 0;
double DTSToMsCoeff = 0;
std::pair<int, int> frameRate;
FrameRateMode frameRateMode;
bool shouldWork;
Expand Down
13 changes: 10 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,10 +72,17 @@ def find_version(*file_paths):
if version.parse(torch.__version__) <= version.parse("1.1.0"):
library += ["caffe2"]
library += ["caffe2_gpu"]
library += ["_C"]
library += ["c10"]
library += ["c10_cuda"]

if version.parse(torch.__version__) >= version.parse("1.5.0"):
library += ["torch_cpu"]
library += ["torch_cuda"]

if version.parse(torch.__version__) >= version.parse("1.5.0") or platform.system() == 'Windows':
library += ["torch"]
library += ["torch_python"]
library += ["c10"]
library += ["_C"]

if platform.system() == 'Windows':
library += ["nvToolsExt64_1"]
Expand Down Expand Up @@ -110,7 +117,7 @@ def find_version(*file_paths):
language='c++')
],
cmdclass={
'build_ext': BuildExtension
'build_ext': BuildExtension.with_options(use_ninja=False)
},
packages=find_packages(),
zip_safe=True,
Expand Down
54 changes: 45 additions & 9 deletions src/Wrappers/WrapperC.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,15 @@ int TensorStream::initPipeline(std::string inputFile, uint8_t maxConsumers, uint
realTimeDelay = ((float)frameRate.first /
(float)frameRate.second) * 1000;
LOG_VALUE(std::string("Frame rate: ") + std::to_string((int) (frameRate.second / frameRate.first)), LogsLevel::LOW);

//1) frameindex * framerate.den / framerate.num = frame time in seconds
//2) 1) * framerate.den / framerate.num = frame time in time base units
indexToDTSCoeff = (double)(videoStream->r_frame_rate.den * videoStream->time_base.den) / (int64_t(videoStream->r_frame_rate.num) * videoStream->time_base.num);

//need convert DTS to ms
//first of all converting DTS to seconds (DTS is measured in timebase.num / timebase.den seconds, so 1 dts = timebase.num / timebase.den seconds)
//after converting from seconds to ms by dividing by 1000
DTSToMsCoeff = (double)videoStream->time_base.num / (double)videoStream->time_base.den * (double)1000;
END_LOG_FUNCTION(std::string("Initializing() "));
return sts;
}
Expand Down Expand Up @@ -118,6 +127,8 @@ int checkGetComplete(std::map<std::string, bool>& blockingStatuses) {
int TensorStream::processingLoop() {
std::unique_lock<std::mutex> locker(closeSync);
int sts = VREADER_OK;
std::pair<int64_t, bool> startDTS = { 0, false };
std::pair<std::chrono::high_resolution_clock::time_point, bool> startTime = { std::chrono::high_resolution_clock::now(), false };
SET_CUDA_DEVICE();
while (shouldWork) {
PUSH_RANGE("TensorStream::processingLoop", NVTXColors::GREEN);
Expand All @@ -133,6 +144,10 @@ int TensorStream::processingLoop() {
sts = parser->Get(parsed);
CHECK_STATUS(sts);
END_LOG_BLOCK(std::string("parser->Get"));
int64_t frameDTS = parsed->dts;
if (frameDTS == AV_NOPTS_VALUE && frameRateMode == FrameRateMode::NATIVE) {
frameDTS = int64_t(decoder->getFrameIndex()) * indexToDTSCoeff;
}
if (!skipAnalyze) {
START_LOG_BLOCK(std::string("parser->Analyze"));
//Parse package to find some syntax issues, don't handle errors returned from this function
Expand All @@ -147,18 +162,39 @@ int TensorStream::processingLoop() {
continue;
CHECK_STATUS(sts);

if (frameRateMode == FrameRateMode::NATIVE) {
START_LOG_BLOCK(std::string("sleep"));
PUSH_RANGE("TensorStream::Sleep", NVTXColors::PURPLE);
//wait here
int sleepTime = realTimeDelay - std::chrono::duration_cast<std::chrono::milliseconds>(
START_LOG_BLOCK(std::string("sleep"));
PUSH_RANGE("TensorStream::Sleep", NVTXColors::PURPLE);
int sleepTime = 0;
if (frameRateMode == FrameRateMode::NATIVE_SIMPLE) {
sleepTime = realTimeDelay - std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - waitTime).count();
if (sleepTime > 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime));
}
else if (frameRateMode == FrameRateMode::NATIVE) {
if (!startDTS.second) {
startDTS.first = frameDTS;
startDTS.second = true;
}

frameDTS -= startDTS.first;

frameDTS = frameDTS * DTSToMsCoeff;
if (!startTime.second) {
startTime.first = std::chrono::high_resolution_clock::now();
startTime.second = true;
}

int64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - startTime.first).count();
LOG_VALUE("Dts: " + std::to_string(frameDTS) + " now: " + std::to_string(now), LogsLevel::HIGH);
if (frameDTS > now) {
sleepTime = frameDTS - now;
}
LOG_VALUE(std::string("Should sleep for: ") + std::to_string(sleepTime), LogsLevel::HIGH);
END_LOG_BLOCK(std::string("sleep"));
}
LOG_VALUE(std::string("Should sleep for: ") + std::to_string(sleepTime), LogsLevel::HIGH);
if (sleepTime > 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime));
}
END_LOG_BLOCK(std::string("sleep"));

if (frameRateMode == FrameRateMode::BLOCKING) {
std::unique_lock<std::mutex> locker(blockingSync);
START_LOG_BLOCK(std::string("blocking wait"));
Expand Down
58 changes: 46 additions & 12 deletions src/Wrappers/WrapperPython.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,16 @@ int TensorStream::initPipeline(std::string inputFile, uint8_t maxConsumers, uint
realTimeDelay = ((float)frameRate.first /
(float)frameRate.second) * 1000;
LOG_VALUE(std::string("Frame rate: ") + std::to_string((int)(frameRate.second / frameRate.first)), LogsLevel::LOW);

//1) frameindex * framerate.den / framerate.num = frame time in seconds
//2) 1) * framerate.den / framerate.num = frame time in time base units
indexToDTSCoeff = (double)(videoStream->r_frame_rate.den * videoStream->time_base.den) / (int64_t(videoStream->r_frame_rate.num) * videoStream->time_base.num);

//need convert DTS to ms
//first of all converting DTS to seconds (DTS is measured in timebase.num / timebase.den seconds, so 1 dts = timebase.num / timebase.den seconds)
//after converting from seconds to ms by dividing by 1000
DTSToMsCoeff = (double)videoStream->time_base.num / (double)videoStream->time_base.den * (double)1000;

END_LOG_FUNCTION(std::string("Initializing() "));
return sts;
}
Expand Down Expand Up @@ -116,6 +126,8 @@ int checkGetComplete(std::map<std::string, bool>& blockingStatuses) {
int TensorStream::processingLoop() {
std::unique_lock<std::mutex> locker(closeSync);
int sts = VREADER_OK;
std::pair<int64_t, bool> startDTS = { 0, false };
std::pair<std::chrono::high_resolution_clock::time_point, bool> startTime = { std::chrono::high_resolution_clock::now(), false };
SET_CUDA_DEVICE();
while (shouldWork) {
PUSH_RANGE("TensorStream::processingLoop", NVTXColors::GREEN);
Expand All @@ -131,6 +143,10 @@ int TensorStream::processingLoop() {
sts = parser->Get(parsed);
CHECK_STATUS(sts);
END_LOG_BLOCK(std::string("parser->Get"));
int64_t frameDTS = parsed->dts;
if (frameDTS == AV_NOPTS_VALUE && frameRateMode == FrameRateMode::NATIVE) {
frameDTS = int64_t(decoder->getFrameIndex()) * indexToDTSCoeff;
}
if (!skipAnalyze) {
START_LOG_BLOCK(std::string("parser->Analyze"));
//Parse package to find some syntax issues, don't handle errors returned from this function
Expand Down Expand Up @@ -162,18 +178,37 @@ int TensorStream::processingLoop() {
}
), tensors.end());
END_LOG_BLOCK(std::string("check tensor to free"));
if (frameRateMode == FrameRateMode::NATIVE) {
START_LOG_BLOCK(std::string("sleep"));
PUSH_RANGE("TensorStream::Sleep", NVTXColors::PURPLE);
//wait here
int sleepTime = realTimeDelay - std::chrono::duration_cast<std::chrono::milliseconds>(
START_LOG_BLOCK(std::string("sleep"));
PUSH_RANGE("TensorStream::Sleep", NVTXColors::PURPLE);
int sleepTime = 0;
if (frameRateMode == FrameRateMode::NATIVE_SIMPLE) {
sleepTime = realTimeDelay - std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - waitTime).count();
if (sleepTime > 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime));
}
else if (frameRateMode == FrameRateMode::NATIVE) {
if (!startDTS.second) {
startDTS.first = frameDTS;
startDTS.second = true;
}
LOG_VALUE(std::string("Should sleep for: ") + std::to_string(sleepTime), LogsLevel::HIGH);
END_LOG_BLOCK(std::string("sleep"));

frameDTS -= startDTS.first;
frameDTS = frameDTS * DTSToMsCoeff;
if (!startTime.second) {
startTime.first = std::chrono::high_resolution_clock::now();
startTime.second = true;
}

int64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - startTime.first).count();
LOG_VALUE("Dts: " + std::to_string(frameDTS) + " now: " + std::to_string(now), LogsLevel::HIGH);
if (frameDTS > now) {
sleepTime = frameDTS - now;
}
}
LOG_VALUE(std::string("Should sleep for: ") + std::to_string(sleepTime), LogsLevel::HIGH);
if (sleepTime > 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime));
}
END_LOG_BLOCK(std::string("sleep"));
if (frameRateMode == FrameRateMode::BLOCKING) {
std::unique_lock<std::mutex> locker(blockingSync);
START_LOG_BLOCK(std::string("blocking wait"));
Expand Down Expand Up @@ -216,7 +251,7 @@ int TensorStream::startProcessing(int cudaDevice) {
LOG_VALUE(std::string("Processing was interrupted or stream has ended"), LogsLevel::LOW);
//we should unlock mutex to allow get() function end execution
if (decoder)
decoder->notifyConsumers();
decoder->notifyConsumers();
LOG_VALUE(std::string("All consumers were notified about processing end"), LogsLevel::LOW);
CHECK_STATUS(sts);
return sts;
Expand Down Expand Up @@ -391,7 +426,6 @@ int TensorStream::dumpFrame(at::Tensor stream, std::string consumerName, FramePa
//in this case size of Tensor is (1, height * channels, width)
frameParameters.resize.width = stream.size(2);
}
std::cout << frameParameters.resize.width << std::endl;
}

if (!frameParameters.resize.height) {
Expand All @@ -403,7 +437,6 @@ int TensorStream::dumpFrame(at::Tensor stream, std::string consumerName, FramePa
//in this case size of Tensor is (1, height * channels, width)
frameParameters.resize.height = stream.size(1) / channelsByFourCC(frameParameters.color.dstFourCC);
}
std::cout << frameParameters.resize.height << std::endl;
}

//Kind of magic, need to concatenate string from Python with std::string to avoid issues in frame dumping (some strange artifacts appeared if create file using consumerName)
Expand Down Expand Up @@ -465,6 +498,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {

py::enum_<FrameRateMode>(m, "FrameRateMode")
.value("NATIVE", FrameRateMode::NATIVE)
.value("NATIVE_SIMPLE", FrameRateMode::NATIVE_SIMPLE)
.value("FAST", FrameRateMode::FAST)
.value("BLOCKING", FrameRateMode::BLOCKING)
.export_values();
Expand Down
2 changes: 1 addition & 1 deletion tensor_stream/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,4 @@
FrameParameters
)

__version__ = '0.3.0'
__version__ = '0.4.0'
18 changes: 10 additions & 8 deletions tensor_stream/tensor_stream.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# @{

## Class with list of possible error statuses can be returned from TensorStream extension
# @warning These statuses are used only in Python wrapper that communicates with TensorStream C++ extension
# @warning These statuses are used only in Python wrapper that communicates with TensorStream C++ extension
class StatusLevel(Enum):
## No errors
OK = 0
Expand Down Expand Up @@ -80,17 +80,19 @@ class Planes(Enum):
## Color components R, G, B are stored in memory separately like RRRRR, GGGGG, BBBBB
PLANAR = 0
## Color components R, G, B are stored in memory one by one like RGBRGBRGB
MERGED = 1
MERGED = 1


## Enum with possible stream reading modes
class FrameRate(Enum):
## Read at native stream/camera frame rate
## Read at native stream frame rate
NATIVE = 0
## Read at fixed stream frame rate
NATIVE_SIMPLE = 1
## Read frames as fast as possible
FAST = 1
FAST = 2
## Read frame by frame without skipping (only local files)
BLOCKING = 2
BLOCKING = 3


## Class that stores frame parameters
Expand Down Expand Up @@ -166,9 +168,9 @@ def __init__(self,
self.tensor_stream = TensorStream.TensorStream()
self.thread = None
## Amount of frames per second obtained from input bitstream, set by @ref initialize() function
self.fps = None
self.fps = None
## Size (width and height) of frames in input bitstream, set by @ref initialize() function
self.frame_size = None
self.frame_size = None

self.max_consumers = max_consumers
self.cuda_device = cuda_device
Expand Down Expand Up @@ -239,7 +241,7 @@ def skip_analyze(self):
# @param[in] normalization Should final colors be normalized or not
# @param[in] delay Specify which frame should be read from decoded buffer. Can take values in range [-buffer_size, 0]
# @param[in] return_index Specify whether need return index of decoded frame or not

# @return Decoded frame in CUDA memory wrapped to Pytorch tensor and index of decoded frame if @ref return_index option set
def read(self,
name="default",
Expand Down
Loading

0 comments on commit 0827723

Please sign in to comment.