-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Runfiles for the AMEn paper are here
- Loading branch information
Showing
2 changed files
with
381 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,293 @@ | ||
% Run file to produce the CME experiment from the paper | ||
% S. Dolgov, D. Savostyanov, | ||
% "Alternating minimal energy methods for linear systems in higher | ||
% dimensions" | ||
|
||
try | ||
maxNumCompThreads(1); | ||
catch | ||
% Just skip. Sometimes if you specify -singleCompThread in the command | ||
% line, MATLAB will fail at maxNumCompThreads with scary, so tell him | ||
% it's okay. | ||
end; | ||
|
||
n = 64*ones(20,1); | ||
T = 10; | ||
Lt = 12; | ||
tol = 1e-6; | ||
kickrank = 4; | ||
nswp = 20; | ||
trunc_norm = 'fro'; | ||
verb = 3; | ||
|
||
tol_gmres = 1e-3; % I would not set anything lower | ||
|
||
d = numel(n); | ||
|
||
Ap = cell(d,1); | ||
% Cascadic MPO -- production reactions | ||
Ap{1} = zeros(1,n(1),n(1),3); | ||
Ap{1}(1,:,:,1) = eye(n(1)); | ||
Ap{1}(1,:,:,2) = diag((0:n(1)-1)./(5+(0:n(1)-1))); | ||
Ap{1}(1,:,:,3) = (diag(ones(n(1)-1,1),-1)-eye(n(1)))*0.7*diag([ones(n(1)-1,1);0]); | ||
for i=2:d-1 | ||
Ap{i} = zeros(3,n(i),n(i),3); | ||
Ap{i}(1,:,:,1)=eye(n(i)); | ||
Ap{i}(3,:,:,3)=eye(n(i)); | ||
Ap{i}(1,:,:,2)=diag((0:n(i)-1)./(5+(0:n(i)-1))); | ||
Ap{i}(2,:,:,3)=(diag(ones(n(i)-1,1),-1)-eye(n(i)))*diag([ones(n(i)-1,1);0]); | ||
end; | ||
Ap{d} = zeros(3,n(d),n(d)); | ||
Ap{d}(2,:,:) = (diag(ones(n(d)-1,1),-1)-eye(n(d)))*diag([ones(n(d)-1,1);0]); | ||
Ap{d}(3,:,:) = eye(n(d)); | ||
% Laplace MPO -- destruction reactions | ||
Ad = cell(d,1); | ||
Ad{1} = zeros(1,n(1),n(1),2); | ||
Ad{1}(1,:,:,1) = (diag(ones(n(1)-1,1),1)-eye(n(1)))*diag((0:n(1)-1))*0.07; | ||
Ad{1}(1,:,:,2) = eye(n(1)); | ||
for i=2:d-1 | ||
Ad{i} = zeros(2,n(i),n(i),2); | ||
Ad{i}(1,:,:,1)=eye(n(i)); | ||
Ad{i}(2,:,:,2)=eye(n(i)); | ||
Ad{i}(2,:,:,1)=(diag(ones(n(i)-1,1),1)-eye(n(i)))*diag((0:n(i)-1))*0.07; | ||
end; | ||
Ad{d} = zeros(2,n(d),n(d),1); | ||
Ad{d}(1,:,:) = eye(n(d)); | ||
Ad{d}(2,:,:) = (diag(ones(n(d)-1,1),1)-eye(n(d)))*diag((0:n(d)-1))*0.07; | ||
|
||
% QTT-tize each dimension separately, it is more stable due to smaller size | ||
Apq = []; | ||
Adq = []; | ||
for i=1:d | ||
r1 = size(Ap{i},1); | ||
r2 = size(Ap{i},4); | ||
Aloc = cell2core(tt_matrix, Ap(i)); | ||
Aloc = tt_reshape(Aloc, factor(n(i))'*[1,1], 1e-13, r1, r2); | ||
Apq = tkron(Apq, Aloc); | ||
|
||
r1 = size(Ad{i},1); | ||
r2 = size(Ad{i},4); | ||
Aloc = cell2core(tt_matrix, Ad(i)); | ||
Aloc = tt_reshape(Aloc, factor(n(i))'*[1,1], 1e-13, r1, r2); | ||
Adq = tkron(Adq, Aloc); | ||
end; | ||
|
||
% Now the final CME operator | ||
A = Apq+Adq; | ||
I = tt_eye(A.n); | ||
|
||
|
||
% Global time scheme | ||
tau = T/2^Lt; | ||
Gt = IpaS(Lt,-1)/tau; | ||
iGt = tt_qtoepl(tkron(tt_ones(2,Lt), tt_tensor([0;1])), Lt)*tau; | ||
Mt = tt_eye(2,Lt); | ||
e1t = tt_unit(2,Lt,1); | ||
et = tt_ones(2,Lt); | ||
eNt = tt_unit(2,Lt,2^Lt); | ||
|
||
% Global matrix | ||
B = tkron(I,tt_eye(2,Lt)) - tkron(A,iGt*Mt); | ||
|
||
|
||
% Initial state | ||
u = []; | ||
for i=1:d | ||
u = tkron(u, tt_unit(factor(n(i))', numel(factor(n(i))), 1)); %QTT | ||
end; | ||
U0 = tkron(u,et); | ||
|
||
% RHS | ||
f = tkron(u, et); | ||
|
||
% Symmetrized matrix and RHS | ||
B2 = B'*B; | ||
B2 = round(B2, 1e-13); | ||
f2 = B'*f; | ||
f2 = round(f2, 1e-13); | ||
|
||
% Use MEX library. It is safe, since in the last TT-Toolbox it switches to | ||
% pure Matlab automatically, if you did not compile the MEXes. | ||
ismex = true; | ||
|
||
% Solvers | ||
% Reference solution | ||
tic; | ||
U_ex = amen_solve2(B, f, tol*1e-3, 'x0', U0, 'nswp', nswp*3, 'kickrank', kickrank, 'trunc_norm', trunc_norm, 'ismex', true, 'verb', 1, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2); | ||
toc; | ||
|
||
% ALS(SD) | ||
tic; | ||
[U_alstpz,td_alstpz] = alstpz_solve(B,f,tol, 'x0',U0, 'max_full_size', 50, 'kickrank', kickrank, 'nswp', nswp, 'kicktype', 'svd', 'symm', false, 'ismex', ismex, 'verb', verb); | ||
toc; | ||
% ALS(SD)+SYMM | ||
tic; | ||
[U_alstpz_s,td_alstpz_s] = alstpz_solve(B2,f2,tol, 'x0',U0, 'max_full_size', 50, 'kickrank', kickrank, 'nswp', nswp, 'kicktype', 'svd', 'symm', false, 'ismex', ismex, 'verb', verb); | ||
toc; | ||
% AMEN+SVD | ||
tic; | ||
[U_amen_svd,td_amen_svd] = amen_solve2(B, f, tol, 'x0', U0, 'nswp', nswp, 'kicktype', 'svd', 'kickrank', kickrank, 'trunc_norm', trunc_norm, 'ismex', ismex, 'verb', verb, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2); | ||
toc; | ||
% AMEN+SVD+SYMM | ||
tic; | ||
[U_amen_svd_s,td_amen_svd_s] = amen_solve2(B2, f2, tol, 'symm', false, 'x0', U0, 'nswp', nswp, 'kicktype', 'svd', 'kickrank', kickrank, 'trunc_norm', trunc_norm, 'ismex', ismex, 'verb', verb, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2); | ||
toc; | ||
% AMEN+ALS | ||
tic; | ||
[U_amen_als,td_amen_als] = amen_solve2(B, f, tol, 'x0', U0, 'nswp', nswp, 'kickrank', kickrank, 'trunc_norm', trunc_norm, 'ismex', ismex, 'verb', verb, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2); | ||
toc; | ||
% AMEN+ALS+SYMM | ||
tic; | ||
[U_amen_als_s,td_amen_als_s] = amen_solve2(B2, f2, tol, 'symm', false, 'x0', U0, 'nswp', nswp, 'kickrank', kickrank, 'trunc_norm', trunc_norm, 'ismex', ismex, 'verb', verb, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2); | ||
toc; | ||
% DMRG | ||
tic; | ||
[U_dmrg,td_dmrg] = dmrg_solve3(B, f, tol, 'x0', U0, 'nswp', nswp, 'kickrank', 0, 'trunc_norm', trunc_norm, 'ismex', ismex, 'verb', verb, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2, 'step_drank', 0, 'step_dpow', 0, 'min_dpow', 0.5, 'dirfilter', 1); | ||
toc; | ||
% DMRG+SYMM | ||
tic; | ||
[U_dmrg_s,td_dmrg_s] = dmrg_solve3(B2, f2, tol, 'symm', false, 'x0', U0, 'nswp', nswp, 'kickrank', 0, 'trunc_norm', trunc_norm, 'ismex', ismex, 'verb', verb, 'max_full_size', 50, 'local_restart', 50, 'local_iters', 2, 'resid_damp', 2, 'step_drank', 0, 'step_dpow', 0, 'min_dpow', 0.5, 'dirfilter', 1); | ||
toc; | ||
|
||
% TT-GMRES | ||
[U_gmres,td_gmres] = tt_gmres(core(B), core(f), tol_gmres, 10, 15, tol_gmres, tol_gmres, [], [], [], [], verb); | ||
|
||
% This is a time-dep problem => check the last snapshots | ||
if (~isempty(whos('U_ex'))) | ||
u_ex = chunk(U_ex, 1, f.d-Lt)*dot(eNt, chunk(U_ex, f.d-Lt+1, f.d)).'; | ||
u_ex = tt_reshape(u_ex, n); | ||
end; | ||
fprintf('Snapshot errors: \n'); | ||
if (~isempty(whos('U_alstpz'))) | ||
u_alstpz = chunk(U_alstpz, 1, f.d-Lt)*dot(eNt, chunk(U_alstpz, f.d-Lt+1, f.d)).'; | ||
u_alstpz = tt_reshape(u_alstpz, n); | ||
fprintf('alstpz:\t\t%3.5e\n', norm(u_alstpz-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_alstpz_s'))) | ||
u_alstpz_s = chunk(U_alstpz_s, 1, f.d-Lt)*dot(eNt, chunk(U_alstpz_s, f.d-Lt+1, f.d)).'; | ||
u_alstpz_s = tt_reshape(u_alstpz_s, n); | ||
fprintf('alstpz_s:\t\t%3.5e\n', norm(u_alstpz_s-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_amen_svd'))) | ||
u_amen_svd = chunk(U_amen_svd, 1, f.d-Lt)*dot(eNt, chunk(U_amen_svd, f.d-Lt+1, f.d)).'; | ||
u_amen_svd = tt_reshape(u_amen_svd, n); | ||
fprintf('amen_svd:\t\t%3.5e\n', norm(u_amen_svd-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_amen_svd_s'))) | ||
u_amen_svd_s = chunk(U_amen_svd_s, 1, f.d-Lt)*dot(eNt, chunk(U_amen_svd_s, f.d-Lt+1, f.d)).'; | ||
u_amen_svd_s = tt_reshape(u_amen_svd_s, n); | ||
fprintf('amen_svd_s:\t\t%3.5e\n', norm(u_amen_svd_s-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_amen_als'))) | ||
u_amen_als = chunk(U_amen_als, 1, f.d-Lt)*dot(eNt, chunk(U_amen_als, f.d-Lt+1, f.d)).'; | ||
u_amen_als = tt_reshape(u_amen_als, n); | ||
fprintf('amen_als:\t\t%3.5e\n', norm(u_amen_als-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_amen_als_s'))) | ||
u_amen_als_s = chunk(U_amen_als_s, 1, f.d-Lt)*dot(eNt, chunk(U_amen_als_s, f.d-Lt+1, f.d)).'; | ||
u_amen_als_s = tt_reshape(u_amen_als_s, n); | ||
fprintf('amen_als_s:\t\t%3.5e\n', norm(u_amen_als_s-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_dmrg'))) | ||
u_dmrg = chunk(U_dmrg, 1, f.d-Lt)*dot(eNt, chunk(U_dmrg, f.d-Lt+1, f.d)).'; | ||
u_dmrg = tt_reshape(u_dmrg, n); | ||
fprintf('dmrg:\t\t%3.5e\n', norm(u_dmrg-u_ex)/norm(u_ex)); | ||
end; | ||
if (~isempty(whos('U_dmrg_s'))) | ||
u_dmrg_s = chunk(U_dmrg_s, 1, f.d-Lt)*dot(eNt, chunk(U_dmrg_s, f.d-Lt+1, f.d)).'; | ||
u_dmrg_s = tt_reshape(u_dmrg_s, n); | ||
fprintf('dmrg_s:\t\t%3.5e\n', norm(u_dmrg_s-u_ex)/norm(u_ex)); | ||
end; | ||
|
||
% Compare with KSL | ||
Nksl = 50; | ||
% Set the ranks to the proper valus returned by AMEN | ||
u_ksl = chunk(U_amen_als, 1, f.d-Lt)*dot(eNt, chunk(U_amen_als, f.d-Lt+1, f.d)).'; | ||
u_ksl = round(u_ksl, tol*0.1); | ||
r_ksl = u_ksl.r; | ||
tic; | ||
u_ksl = u+0*tt_rand(u.n,u.d,r_ksl,-1); | ||
for j=1:Nksl | ||
u_ksl = tt_ksl_ml(u_ksl, A, tt_zeros(u_ksl.n), T/Nksl); | ||
end; | ||
ttimes_ksl=toc; | ||
u_ksl = tt_reshape(u_ksl, n); | ||
fprintf('ksl:\t\t%3.5e\n', norm(u_ksl-u_ex)/norm(u_ex)); | ||
fprintf('CPU Time of the KSL: %g\n', ttimes_ksl); | ||
|
||
|
||
% % Result history processing | ||
err_alstpz = zeros(nswp,1); | ||
err_alstpz_s = zeros(nswp,1); | ||
err_amen_svd = zeros(nswp,1); | ||
err_amen_svd_s = zeros(nswp,1); | ||
err_amen_als = zeros(nswp,1); | ||
err_amen_als_s = zeros(nswp,1); | ||
err_dmrg = zeros(nswp,1); | ||
err_dmrg_s = zeros(nswp,1); | ||
% Measure the errors | ||
for i=1:nswp | ||
if (~isempty(whos('td_alstpz'))) | ||
err_alstpz(i) = norm(td_alstpz{2}{end,i}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_alstpz_s'))) | ||
err_alstpz_s(i) = norm(td_alstpz_s{2}{end,i}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_amen_svd'))) | ||
err_amen_svd(i) = norm(td_amen_svd{2}{end,i}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_amen_svd_s'))) | ||
err_amen_svd_s(i) = norm(td_amen_svd_s{2}{end,i}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_amen_als'))) | ||
err_amen_als(i) = norm(td_amen_als{2}{end,i}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_amen_als_s'))) | ||
err_amen_als_s(i) = norm(td_amen_als_s{2}{end,i}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_dmrg'))) | ||
err_dmrg(i) = norm(td_dmrg{2}{end-1,i*2-1}-U_ex)/norm(U_ex); | ||
end; | ||
if (~isempty(whos('td_dmrg_s'))) | ||
err_dmrg_s(i) = norm(td_dmrg_s{2}{end-1,i*2-1}-U_ex)/norm(U_ex); | ||
end; | ||
end; | ||
|
||
% Prepare the data in the TikZ-readable form | ||
dats = [(1:nswp)', td_alstpz{1}(end,:)', err_alstpz, td_alstpz_s{1}(end,:)', err_alstpz_s, ... | ||
td_amen_svd{1}(end,:)', err_amen_svd, td_amen_svd_s{1}(end,:)', err_amen_svd_s, ... | ||
td_amen_als{1}(end,:)', err_amen_als, td_amen_als_s{1}(end,:)', err_amen_als_s, ... | ||
td_dmrg{1}(end-1,1:2:end)', err_dmrg, td_dmrg_s{1}(end-1,1:2:end)', err_dmrg_s]; | ||
% dats layout: | ||
% iter(1) t_alstpz(2) e_alstpz(3) t_alstpz_s(4) e_alstpz_s(5) | ||
% t_as(6) e_as(7) t_as_s(8) e_as_s(9) | ||
% t_aa(10) e_aa(11) t_aa_s(12) e_aa_s(13) | ||
% t_d(14) e_d(15) t_d_s(16) e_d_s(17) | ||
|
||
% Process the GMRES output. It is different... | ||
if (~isempty(whos('td_gmres'))) | ||
iter_gmres = min([find(td_gmres{1}==0, 1), numel(td_gmres{1})+1])-1; | ||
err_gmres = zeros(iter_gmres, 1); | ||
for i=1:iter_gmres | ||
err_gmres(i) = norm(tt_tensor(td_gmres{2}{i})-U_ex)/norm(U_ex); | ||
end; | ||
dat_gmres = [(1:iter_gmres)', td_gmres{1}(1:iter_gmres)', err_gmres]; | ||
end; | ||
|
||
% Draw 'em for humans | ||
% iter | ||
figure(1); | ||
semilogy(dats(:,1), dats(:,[3,5,7,9,11,13,15,17]), dat_gmres(1:min(iter_gmres,nswp),1), dat_gmres(1:min(iter_gmres,nswp),3)); | ||
legend('alstz', 'alstz-s', 'amen-svd', 'amen-svd-s', 'amen-als', 'amen-als-s', 'dmrg', 'dmrg-s', 'gmres'); | ||
% time | ||
figure(2); | ||
loglog(dats(:,2),dats(:,3), dats(:,4),dats(:,5), ... | ||
dats(:,6),dats(:,7), dats(:,8),dats(:,9), ... | ||
dats(:,10),dats(:,11), dats(:,12),dats(:,13), ... | ||
dats(:,14),dats(:,15), dats(:,16),dats(:,17), ... | ||
dat_gmres(:,2), dat_gmres(:,3)); | ||
|
||
% % Uncomment this if you want to draw the data elsewhere | ||
% save('cme20_err.dat', '-ascii', 'dats'); | ||
% save('cme20_err_gmres.dat', '-ascii', 'dat_gmres'); | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
% Run file to produce the Poisson experiment from the paper | ||
% S. Dolgov, D. Savostyanov, | ||
% "Alternating minimal energy methods for linear systems in higher | ||
% dimensions" | ||
|
||
try | ||
maxNumCompThreads(1); | ||
catch | ||
% Just skip. Sometimes if you specify -singleCompThread in the command | ||
% line, MATLAB will fail at maxNumCompThreads with scary, so tell him | ||
% it's okay. | ||
end; | ||
|
||
|
||
d = 16; | ||
L = 6; | ||
|
||
%!!! Last run: on dx360-11, E5-2670 0 @ 2.60GHz !!!!!!! | ||
|
||
tol = 1e-6; | ||
nswp = 5; | ||
kickrank = 4; | ||
|
||
tol_gmres = 1e-3; % I would not set anything lower | ||
|
||
% Matrix, RHS | ||
A = tt_qlaplace_dd(L*ones(1,d))*(2^L+1)^2; | ||
A = tt_reshape(A, 2^L*ones(d,2)); | ||
f = tt_ones(2^L, d); | ||
|
||
% Reference solution | ||
u_ex = amen_solve2(A, f, 1e-10, 'nswp', 30, 'max_full_size', 1500); | ||
|
||
% Compare the solvers | ||
% testdata format: {d,swp} | ||
[u_svd,sd_svd] = amen_solve2(A, f, tol, 'x0', f, 'verb', 4, 'kicktype', 'svd', 'kickrank', kickrank, 'nswp', nswp, 'max_full_size', 50, 'trunc_norm', 'fro', 'ismex', true); | ||
[u_als,sd_als] = amen_solve2(A, f, tol, 'x0', f, 'verb', 4, 'kicktype', 'als', 'kickrank', kickrank, 'nswp', nswp, 'max_full_size', 50, 'trunc_norm', 'fro', 'ismex', true); | ||
[u_alstpz,sd_alstpz] = alstpz_solve(A,f,tol, 'x0',f, 'verb', 4, 'max_full_size', 50, 'kickrank', kickrank, 'nswp', nswp, 'kicktype', 'svd', 'symm', false, 'ismex', true); | ||
[u_dmrg,sd_dmrg] = dmrg_solve3(A, f, tol, 'x0', f, 'kickrank', 0, 'min_dpow', 0.5, 'step_dpow', 0, 'step_drank', 0, 'max_full_size', 50, 'nswp', nswp, 'verb', 4, 'ismex', true, 'trunc_norm', 'fro', 'dirfilter', 1); | ||
[U_gmres,td_gmres] = tt_gmres(core(A), core(f), tol_gmres, 4, 15, tol_gmres, tol_gmres, [], [], [], [], 3); | ||
|
||
|
||
% Measure the A-errors | ||
err0 = sqrt(dot(u_ex, A*u_ex)); | ||
errs_svd = zeros(d,nswp); | ||
errs_als = zeros(d,nswp); | ||
errs_alstpz = zeros(d,nswp); | ||
errs_dmrg = zeros(d-1,nswp); | ||
for i=1:nswp | ||
for j=1:d | ||
errs_svd(j,i) = sqrt(dot(sd_svd{2}{j,i}-u_ex, A*(sd_svd{2}{j,i}-u_ex)))/err0; | ||
errs_als(j,i) = sqrt(dot(sd_als{2}{j,i}-u_ex, A*(sd_als{2}{j,i}-u_ex)))/err0; | ||
errs_alstpz(j,i) = sqrt(dot(sd_alstpz{2}{j,i}-u_ex, A*(sd_alstpz{2}{j,i}-u_ex)))/err0; | ||
if (j<d) | ||
errs_dmrg(j,i) = sqrt(dot(sd_dmrg{2}{j,2*i-1}-u_ex, A*(sd_dmrg{2}{j,2*i-1}-u_ex)))/err0; | ||
end; | ||
end; | ||
end; | ||
|
||
% Prepare the data in the TikZ-readable form | ||
% 1 2 3 4 5 6 7 | ||
% iter, t_alstpz, e_alstpz, t_svd, e_svd, t_als, e_als | ||
dat_amens = [(1/d:1/d:nswp)', sd_alstpz{1}(:), errs_alstpz(:), sd_svd{1}(:), errs_svd(:), sd_als{1}(:), errs_als(:)]; | ||
dat_dmrg = [(1/(d-1):1/(d-1):nswp)', reshape(sd_dmrg{1}(1:d-1,1:2:nswp*2), [],1), errs_dmrg(:)]; | ||
|
||
% Process the GMRES output. It is different... | ||
if (~isempty(whos('td_gmres'))) | ||
iter_gmres = min([find(td_gmres{1}==0, 1), numel(td_gmres{1})+1])-1; | ||
err_gmres = zeros(iter_gmres, 1); | ||
for i=1:iter_gmres | ||
err_gmres(i) = sqrt(dot(tt_tensor(td_gmres{2}{i})-u_ex, A*(tt_tensor(td_gmres{2}{i})-u_ex)))/err0; | ||
end; | ||
dat_gmres = [(1:iter_gmres)', td_gmres{1}(1:iter_gmres)', err_gmres]; | ||
end; | ||
|
||
% Draw 'em for humans | ||
% iter | ||
figure(1); | ||
semilogy(dat_amens(:,1), dat_amens(:,[3,5,7]), dat_dmrg(:,1), dat_dmrg(:,3), dat_gmres(1:min(iter_gmres,nswp),1), dat_gmres(1:min(iter_gmres,nswp),3)); | ||
legend('alstpz', 'amen-svd', 'amen-als', 'dmrg', 'gmres'); | ||
% time | ||
figure(2); | ||
loglog(dat_amens(:,2), dat_amens(:,3), dat_amens(:,4), dat_amens(:,5), dat_amens(:,6), dat_amens(:,7), dat_dmrg(:,2), dat_dmrg(:,3), dat_gmres(:,2), dat_gmres(:,3)); | ||
|
||
% % Uncomment this if you want to draw the data elsewhere | ||
% save('conv_lp16_amens.dat', '-ascii', 'dat_amens'); | ||
% save('conv_lp16_dmrg.dat', '-ascii', 'dat_dmrg'); | ||
% save('conv_lp16_gmres.dat', '-ascii', 'dat_gmres'); |