-
Notifications
You must be signed in to change notification settings - Fork 609
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: monotonic sqrt big dec (#6053)
* feat: monotonic sqrt big dec * changelog (cherry picked from commit 2b703e6) # Conflicts: # CHANGELOG.md
- Loading branch information
1 parent
3378f8f
commit 499055b
Showing
4 changed files
with
206 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
package osmomath | ||
|
||
import ( | ||
"math/big" | ||
"math/rand" | ||
"testing" | ||
|
||
sdk "github.com/cosmos/cosmos-sdk/types" | ||
"github.com/stretchr/testify/assert" | ||
"github.com/stretchr/testify/require" | ||
) | ||
|
||
func generateRandomDecForEachBitlenBigDec(r *rand.Rand, numPerBitlen int) []BigDec { | ||
return generateRandomDecForEachBitlen[BigDec](r, numPerBitlen, NewDecFromBigIntWithPrec, Precision) | ||
} | ||
|
||
func TestSdkApproxSqrtVectors_BigDec(t *testing.T) { | ||
testCases := []struct { | ||
input BigDec | ||
expected BigDec | ||
}{ | ||
{OneDec(), OneDec()}, // 1.0 => 1.0 | ||
{NewDecWithPrec(25, 2), NewDecWithPrec(5, 1)}, // 0.25 => 0.5 | ||
{NewDecWithPrec(4, 2), NewDecWithPrec(2, 1)}, // 0.09 => 0.3 | ||
{NewDecFromInt(NewInt(9)), NewDecFromInt(NewInt(3))}, // 9 => 3 | ||
{NewDecFromInt(NewInt(2)), MustNewDecFromStr("1.414213562373095048801688724209698079")}, // 2 => 1.414213562373095048801688724209698079 | ||
{smallestBigDec, NewDecWithPrec(1, 18)}, // 10^-36 => 10^-18 | ||
{smallestBigDec.MulInt64(3), NewDecWithPrec(1732050807568877294, 36)}, // 3*10^-36 => sqrt(3)*10^-18 | ||
} | ||
|
||
for i, tc := range testCases { | ||
res, err := MonotonicSqrtBigDec(tc.input) | ||
require.NoError(t, err) | ||
require.Equal(t, tc.expected, res, "unexpected result for test case %d, input: %v", i, tc.input) | ||
} | ||
} | ||
|
||
func testMonotonicityAroundBigDec(t *testing.T, x BigDec) { | ||
// test that sqrt(x) is monotonic around x | ||
// i.e. sqrt(x-1) <= sqrt(x) <= sqrt(x+1) | ||
sqrtX, err := MonotonicSqrtBigDec(x) | ||
require.NoError(t, err) | ||
sqrtXMinusOne, err := MonotonicSqrtBigDec(x.Sub(smallestBigDec)) | ||
require.NoError(t, err) | ||
sqrtXPlusOne, err := MonotonicSqrtBigDec(x.Add(smallestBigDec)) | ||
require.NoError(t, err) | ||
assert.True(t, sqrtXMinusOne.LTE(sqrtX), "sqrtXMinusOne: %s, sqrtX: %s", sqrtXMinusOne, sqrtX) | ||
assert.True(t, sqrtX.LTE(sqrtXPlusOne), "sqrtX: %s, sqrtXPlusOne: %s", sqrtX, sqrtXPlusOne) | ||
} | ||
|
||
func TestSqrtMonotinicity_BigDec(t *testing.T) { | ||
type testcase struct { | ||
smaller BigDec | ||
bigger BigDec | ||
} | ||
testCases := []testcase{ | ||
{MustNewDecFromStr("120.120060020005000000"), MustNewDecFromStr("120.120060020005000001")}, | ||
{smallestBigDec, smallestBigDec.MulInt64(2)}, | ||
} | ||
// create random test vectors for every bit-length | ||
r := rand.New(rand.NewSource(rand.Int63())) | ||
for i := 0; i < 255+sdk.DecimalPrecisionBits; i++ { | ||
upperbound := big.NewInt(1) | ||
upperbound.Lsh(upperbound, uint(i)) | ||
for j := 0; j < 100; j++ { | ||
v := big.NewInt(0).Rand(r, upperbound) | ||
d := NewDecFromBigIntWithPrec(v, 36) | ||
testCases = append(testCases, testcase{d, d.Add(smallestBigDec)}) | ||
} | ||
} | ||
for i := 0; i < 1024; i++ { | ||
d := NewDecWithPrec(int64(i), 18) | ||
testCases = append(testCases, testcase{d, d.Add(smallestBigDec)}) | ||
} | ||
|
||
for _, i := range testCases { | ||
sqrtSmaller, err := MonotonicSqrtBigDec(i.smaller) | ||
require.NoError(t, err, "smaller: %s", i.smaller) | ||
sqrtBigger, err := MonotonicSqrtBigDec(i.bigger) | ||
require.NoError(t, err, "bigger: %s", i.bigger) | ||
assert.True(t, sqrtSmaller.LTE(sqrtBigger), "sqrtSmaller: %s, sqrtBigger: %s", sqrtSmaller, sqrtBigger) | ||
|
||
// separately sanity check that sqrt * sqrt >= input | ||
sqrtSmallerSquared := sqrtSmaller.Mul(sqrtSmaller) | ||
assert.True(t, sqrtSmallerSquared.GTE(i.smaller), "sqrt %s, sqrtSmallerSquared: %s, smaller: %s", sqrtSmaller, sqrtSmallerSquared, i.smaller) | ||
} | ||
} | ||
|
||
// Test that square(sqrt(x)) = x when x is a perfect square. | ||
// We do this by sampling sqrt(v) from the set of numbers `a.b`, where a in [0, 2^128], b in [0, 10^9]. | ||
// and then setting x = sqrt(v) | ||
// this is because this is the set of values whose squares are perfectly representable. | ||
func TestPerfectSquares_BigDec(t *testing.T) { | ||
cases := []BigDec{ | ||
NewBigDec(100), | ||
} | ||
r := rand.New(rand.NewSource(rand.Int63())) | ||
tenToMin9 := big.NewInt(1_000_000_000) | ||
for i := 0; i < 128; i++ { | ||
upperbound := big.NewInt(1) | ||
upperbound.Lsh(upperbound, uint(i)) | ||
for j := 0; j < 100; j++ { | ||
v := big.NewInt(0).Rand(r, upperbound) | ||
dec := big.NewInt(0).Rand(r, tenToMin9) | ||
d := NewDecFromBigInt(v).Add(NewDecFromBigIntWithPrec(dec, 9)) | ||
cases = append(cases, d.MulMut(d)) | ||
} | ||
} | ||
|
||
for _, i := range cases { | ||
sqrt, err := MonotonicSqrtBigDec(i) | ||
require.NoError(t, err, "smaller: %s", i) | ||
assert.Equal(t, i, sqrt.MulMut(sqrt)) | ||
if !i.IsZero() { | ||
testMonotonicityAroundBigDec(t, i) | ||
} | ||
} | ||
} | ||
|
||
func TestSqrtRounding_BigDec(t *testing.T) { | ||
testCases := []BigDec{ | ||
MustNewDecFromStr("11662930532952632574132537947829685675668532938920838254939577167671385459971.396347723368091000"), | ||
} | ||
r := rand.New(rand.NewSource(rand.Int63())) | ||
testCases = append(testCases, generateRandomDecForEachBitlenBigDec(r, 10)...) | ||
for _, i := range testCases { | ||
sqrt, err := MonotonicSqrtBigDec(i) | ||
require.NoError(t, err, "smaller: %s", i) | ||
// Sanity check that sqrt * sqrt >= input | ||
sqrtSquared := sqrt.Mul(sqrt) | ||
assert.True(t, sqrtSquared.GTE(i), "sqrt %s, sqrtSquared: %s, original: %s", sqrt, sqrtSquared, i) | ||
// (aside) check that (sqrt - 1ulp)^2 <= input | ||
sqrtMin1 := sqrt.Sub(smallestBigDec) | ||
sqrtSquared = sqrtMin1.Mul(sqrtMin1) | ||
assert.True(t, sqrtSquared.LTE(i), "sqrtMin1ULP %s, sqrtSquared: %s, original: %s", sqrt, sqrtSquared, i) | ||
} | ||
} | ||
|
||
// benchmarks the new square root across bit-lengths, for comparison with the SDK square root. | ||
func BenchmarkMonotonicSqrt_BigDec(b *testing.B) { | ||
r := rand.New(rand.NewSource(1)) | ||
vectors := generateRandomDecForEachBitlenBigDec(r, 1) | ||
for i := 0; i < b.N; i++ { | ||
for j := 0; j < len(vectors); j++ { | ||
a, _ := MonotonicSqrtBigDec(vectors[j]) | ||
_ = a | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters