Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG/DEPR: deprecate Categorical take default behaviour + fix Series[categorical].take #20841

Merged
merged 12 commits into from
Apr 30, 2018
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v0.23.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -856,6 +856,7 @@ Other API Changes
- Constructing a Series from a list of length 1 no longer broadcasts this list when a longer index is specified (:issue:`19714`, :issue:`20391`).
- :func:`DataFrame.to_dict` with ``orient='index'`` no longer casts int columns to float for a DataFrame with only int and float columns (:issue:`18580`)
- A user-defined-function that is passed to :func:`Series.rolling().aggregate() <pandas.core.window.Rolling.aggregate>`, :func:`DataFrame.rolling().aggregate() <pandas.core.window.Rolling.aggregate>`, or its expanding cousins, will now *always* be passed a ``Series``, rather than a ``np.array``; ``.apply()`` only has the ``raw`` keyword, see :ref:`here <whatsnew_0230.enhancements.window_raw>`. This is consistent with the signatures of ``.aggregate()`` across pandas (:issue:`20584`)
- The previous default behavior of negative indices in ``Categorical.take`` is deprecated. In a future version it will change from meaning missing values to meaning positional indices from the right. The future behavior is consistent with :meth:`Series.take` (:issue:`20664`).
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shouldn't this be in the deprecations section?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fixed.


.. _whatsnew_0230.deprecations:

Expand Down Expand Up @@ -1024,6 +1025,7 @@ Categorical
- Bug in ``Categorical.__iter__`` not converting to Python types (:issue:`19909`)
- Bug in :func:`pandas.factorize` returning the unique codes for the ``uniques``. This now returns a ``Categorical`` with the same dtype as the input (:issue:`19721`)
- Bug in :func:`pandas.factorize` including an item for missing values in the ``uniques`` return value (:issue:`19721`)
- Bug in :meth:`Series.take` with categorical data interpreting ``-1`` in `indices` as missing value markers, rather than the last element of the Series (:issue:`20664`)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

double backticks on indices

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Single backticks for parameter names.


Datetimelike
^^^^^^^^^^^^
Expand Down
62 changes: 53 additions & 9 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

import numpy as np
from warnings import warn
import textwrap
import types

from pandas import compat
Expand Down Expand Up @@ -29,7 +30,7 @@
is_scalar,
is_dict_like)

from pandas.core.algorithms import factorize, take_1d, unique1d
from pandas.core.algorithms import factorize, take_1d, unique1d, take
from pandas.core.accessor import PandasDelegate
from pandas.core.base import (PandasObject,
NoNewAttributesMixin, _shared_docs)
Expand All @@ -48,6 +49,17 @@
from .base import ExtensionArray


_take_msg = textwrap.dedent("""\
Interpreting negative values in 'indexer' as missing values.
In the future, this will change to meaning positional indicies
from the right.

Use 'allow_fill=True' to retain the previous behavior and silence this
warning.

Use 'allow_fill=False' to accept the new behavior.""")


def _cat_compare_op(op):
def f(self, other):
# On python2, you can usually compare any type to any type, and
Expand Down Expand Up @@ -1732,17 +1744,49 @@ def fillna(self, value=None, method=None, limit=None):
return self._constructor(values, categories=self.categories,
ordered=self.ordered, fastpath=True)

def take_nd(self, indexer, allow_fill=True, fill_value=None):
""" Take the codes by the indexer, fill with the fill_value.

For internal compatibility with numpy arrays.
def take_nd(self, indexer, allow_fill=None, fill_value=None):
"""
Take elements from the Categorical.

# filling must always be None/nan here
# but is passed thru internally
assert isna(fill_value)
Parameters
----------
indexer : sequence of integers
allow_fill : bool, default None.
How to handle negative values in `indexer`.

codes = take_1d(self._codes, indexer, allow_fill=True, fill_value=-1)
* False: negative values in `indices` indicate positional indices
from the right. This is similar to
:func:`numpy.take`.

* True: negative values in `indices` indicate missing values
(the default). These values are set to `fill_value`. Any other
other negative values raise a ``ValueError``.

.. versionchanged:: 0.23.0

Deprecated the default value of `allow_fill`. The deprecated
default is ``True``. In the future, this will change to
``False``.

Returns
-------
Categorical
This Categorical will have the same categories and ordered as
`self`.
"""
indexer = np.asarray(indexer, dtype=np.intp)
if allow_fill is None:
if (indexer < 0).any():
warn(_take_msg, FutureWarning, stacklevel=2)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe just put the warning inline here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That messes with the formatting.

allow_fill = True

if isna(fill_value):
# For categorical, any NA value is considered a user-facing
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this condition tested?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yep.

# NA value. Our storage NA value is -1.
fill_value = -1

codes = take(self._codes, indexer, allow_fill=allow_fill,
fill_value=fill_value)
result = self._constructor(codes, categories=self.categories,
ordered=self.ordered, fastpath=True)
return result
Expand Down
9 changes: 8 additions & 1 deletion pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -3499,7 +3499,14 @@ def _take(self, indices, axis=0, convert=True, is_copy=False):

indices = _ensure_platform_int(indices)
new_index = self.index.take(indices)
new_values = self._values.take(indices)

if is_categorical_dtype(self):
# https://github.com/pandas-dev/pandas/issues/20664
# TODO: remove when the default Categorical.take behavior changes
kwargs = {'allow_fill': False}
else:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

so you changed the default? it was True before

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The fact that take=False wasn't passed through here was a regression from 0.20. The default for Categorical.take is still True (None -> warning -> True).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Though since allow_fill isn't a keyword for _take we can just pass it unconditionally here.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah nevermind. allow_fill isn't a keyword for ndarray.take. That's why the kwargs is needed.

kwargs = {}
new_values = self._values.take(indices, **kwargs)

result = (self._constructor(new_values, index=new_index,
fastpath=True).__finalize__(self))
Expand Down
54 changes: 54 additions & 0 deletions pandas/tests/categorical/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,18 @@
import pandas.util.testing as tm


@pytest.fixture(params=[True, False])
def allow_fill(request):
"""Boolean 'allow_fill' parameter for Categorical.take"""
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

these can prob be moved into a higher level conftest

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Will do when that's necessary.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pls make a conftest here, otherwise these are easily lost

return request.param


@pytest.fixture(params=[True, False])
def ordered(request):
"""Boolean 'ordered' parameter for Categorical."""
return request.param


@pytest.mark.parametrize('ordered', [True, False])
@pytest.mark.parametrize('categories', [
['b', 'a', 'c'],
Expand Down Expand Up @@ -69,3 +81,45 @@ def test_isin_empty(empty):

result = s.isin(empty)
tm.assert_numpy_array_equal(expected, result)


class TestTake(object):
# https://github.com/pandas-dev/pandas/issues/20664

def test_take_warns(self):
cat = pd.Categorical(['a', 'b'])
with tm.assert_produces_warning(FutureWarning):
cat.take([0, -1])

def test_take_positive_no_warning(self):
cat = pd.Categorical(['a', 'b'])
with tm.assert_produces_warning(None):
cat.take([0, 0])

def test_take_bounds(self, allow_fill):
# https://github.com/pandas-dev/pandas/issues/20664
cat = pd.Categorical(['a', 'b', 'a'])
with pytest.raises(IndexError):
cat.take([4, 5], allow_fill=allow_fill)

def test_take_empty(self, allow_fill):
# https://github.com/pandas-dev/pandas/issues/20664
cat = pd.Categorical([], categories=['a', 'b'])
with pytest.raises(IndexError):
cat.take([0], allow_fill=allow_fill)

def test_positional_take(self, ordered):
cat = pd.Categorical(['a', 'a', 'b', 'b'], categories=['b', 'a'],
ordered=ordered)
result = cat.take([0, 1, 2], allow_fill=False)
expected = pd.Categorical(['a', 'a', 'b'], categories=cat.categories,
ordered=ordered)
tm.assert_categorical_equal(result, expected)

def test_positional_take_unobserved(self, ordered):
cat = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'],
ordered=ordered)
result = cat.take([1, 0], allow_fill=False)
expected = pd.Categorical(['b', 'a'], categories=cat.categories,
ordered=ordered)
tm.assert_categorical_equal(result, expected)
2 changes: 1 addition & 1 deletion pandas/tests/extension/category/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ def test_take_non_na_fill_value(self):
def test_take_out_of_bounds_raises(self):
pass

@skip_take
@pytest.mark.skip(reason="GH-20747. Unobserved categories.")
def test_take_series(self):
pass

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/extension/json/test_json.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def data():
while len(data[0]) == len(data[1]):
data = make_data()

return JSONArray(make_data())
return JSONArray(data)


@pytest.fixture
Expand Down
10 changes: 10 additions & 0 deletions pandas/tests/series/indexing/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -753,6 +753,16 @@ def test_take():
s.take([-1, 3, 4], convert=False)


def test_take_categorical():
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

instead of this test (or in addition to), I think you should be able to remove the skip from test_take_series in the categorical extension tests

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That still fails because of #20747. The unobserved categories are still present. I've updated the skip.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah, yes, that's still there :)

# https://github.com/pandas-dev/pandas/issues/20664
s = Series(pd.Categorical(['a', 'b', 'c']))
result = s.take([-2, -2, 0])
expected = Series(pd.Categorical(['b', 'b', 'a'],
categories=['a', 'b', 'c']),
index=[1, 1, 0])
assert_series_equal(result, expected)


def test_head_tail(test_data):
assert_series_equal(test_data.series.head(), test_data.series[:5])
assert_series_equal(test_data.series.head(0), test_data.series[0:0])
Expand Down