Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: Series.combine() fails with ExtensionArray inside of Series #21183

Merged
merged 18 commits into from
Jun 8, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -178,9 +178,18 @@ Reshaping
-
-

ExtensionArray
^^^^^^^^^^^^^^

- :meth:`Series.combine()` works correctly with :class:`~pandas.api.extensions.ExtensionArray` inside of :class:`Series` (:issue:`20825`)
- :meth:`Series.combine()` with scalar argument now works for any function type (:issue:`21248`)
-
-

Other
^^^^^

-
-
-
-
30 changes: 25 additions & 5 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -2204,7 +2204,7 @@ def _binop(self, other, func, level=None, fill_value=None):
result.name = None
return result

def combine(self, other, func, fill_value=np.nan):
def combine(self, other, func, fill_value=None):
"""
Perform elementwise binary operation on two Series using given function
with optional fill value when an index is missing from one Series or
Expand All @@ -2216,6 +2216,8 @@ def combine(self, other, func, fill_value=np.nan):
func : function
Function that takes two scalars as inputs and return a scalar
fill_value : scalar value
The default specifies to use the appropriate NaN value for
the underlying dtype of the Series
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

does this need a versionchanged?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There should be no change in behaviour for normal Series I think, as the na_value_for_dtypewill give NaN/NaT (which was the default before). It's only for extension arrays that it might give another value, depending on what the extension array defined its missing value to be.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I agree with @jorisvandenbossche


Returns
-------
Expand All @@ -2235,20 +2237,38 @@ def combine(self, other, func, fill_value=np.nan):
Series.combine_first : Combine Series values, choosing the calling
Series's values first
"""
if fill_value is None:
fill_value = na_value_for_dtype(self.dtype, compat=False)

if isinstance(other, Series):
# If other is a Series, result is based on union of Series,
# so do this element by element
new_index = self.index.union(other.index)
new_name = ops.get_op_result_name(self, other)
new_values = np.empty(len(new_index), dtype=self.dtype)
for i, idx in enumerate(new_index):
new_values = []
for idx in new_index:
lv = self.get(idx, fill_value)
rv = other.get(idx, fill_value)
with np.errstate(all='ignore'):
new_values[i] = func(lv, rv)
new_values.append(func(lv, rv))
else:
# Assume that other is a scalar, so apply the function for
# each element in the Series
new_index = self.index
with np.errstate(all='ignore'):
new_values = func(self._values, other)
new_values = [func(lv, other) for lv in self._values]
new_name = self.name

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you put a comment on what is going on here

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

if is_categorical_dtype(self.values):
pass
elif is_extension_array_dtype(self.values):
# The function can return something of any type, so check
# if the type is compatible with the calling EA
try:
new_values = self._values._from_sequence(new_values)
except TypeError:
pass

return self._constructor(new_values, index=new_index, name=new_name)

def combine_first(self, other):
Expand Down
34 changes: 34 additions & 0 deletions pandas/tests/extension/base/methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,3 +103,37 @@ def test_factorize_equivalence(self, data_for_grouping, na_sentinel):

tm.assert_numpy_array_equal(l1, l2)
self.assert_extension_array_equal(u1, u2)

def test_combine_le(self, data_repeated):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you give a 1-liner explaining what this is testing. the name of the test is uninformative.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

# GH 20825
# Test that combine works when doing a <= (le) comparison
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series([a <= b for (a, b) in
zip(list(orig_data1), list(orig_data2))])
self.assert_series_equal(result, expected)

val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series([a <= val for a in list(orig_data1)])
self.assert_series_equal(result, expected)

def test_combine_add(self, data_repeated):
# GH 20825
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 + x2)
expected = pd.Series(
orig_data1._from_sequence([a + b for (a, b) in
zip(list(orig_data1),
list(orig_data2))]))
self.assert_series_equal(result, expected)

val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 + x2)
expected = pd.Series(
orig_data1._from_sequence([a + val for a in list(orig_data1)]))
self.assert_series_equal(result, expected)
26 changes: 26 additions & 0 deletions pandas/tests/extension/category/test_categorical.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import string

import pytest
import pandas as pd
import numpy as np

from pandas.api.types import CategoricalDtype
Expand Down Expand Up @@ -29,6 +30,15 @@ def data_missing():
return Categorical([np.nan, 'A'])


@pytest.fixture
def data_repeated():
"""Return different versions of data for count times"""
def gen(count):
for _ in range(count):
yield Categorical(make_data())
yield gen


@pytest.fixture
def data_for_sorting():
return Categorical(['A', 'B', 'C'], categories=['C', 'A', 'B'],
Expand Down Expand Up @@ -154,6 +164,22 @@ class TestMethods(base.BaseMethodsTests):
def test_value_counts(self, all_data, dropna):
pass

def test_combine_add(self, data_repeated):
# GH 20825
# When adding categoricals in combine, result is a string
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 + x2)
expected = pd.Series(([a + b for (a, b) in
zip(list(orig_data1), list(orig_data2))]))
self.assert_series_equal(result, expected)

val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 + x2)
expected = pd.Series([a + val for a in list(orig_data1)])
self.assert_series_equal(result, expected)


class TestCasting(base.BaseCastingTests):
pass
9 changes: 9 additions & 0 deletions pandas/tests/extension/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,15 @@ def all_data(request, data, data_missing):
return data_missing


@pytest.fixture
def data_repeated():
"""Return different versions of data for count times"""
def gen(count):
for _ in range(count):
yield NotImplementedError
yield gen


@pytest.fixture
def data_for_sorting():
"""Length-3 array with a known sort order.
Expand Down
4 changes: 3 additions & 1 deletion pandas/tests/extension/decimal/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,9 @@ class DecimalArray(ExtensionArray):
dtype = DecimalDtype()

def __init__(self, values):
assert all(isinstance(v, decimal.Decimal) for v in values)
for val in values:
if not isinstance(val, self.dtype.type):
raise TypeError
values = np.asarray(values, dtype=object)

self._data = values
Expand Down
8 changes: 8 additions & 0 deletions pandas/tests/extension/decimal/test_decimal.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,14 @@ def data_missing():
return DecimalArray([decimal.Decimal('NaN'), decimal.Decimal(1)])


@pytest.fixture
def data_repeated():
def gen(count):
for _ in range(count):
yield DecimalArray(make_data())
yield gen


@pytest.fixture
def data_for_sorting():
return DecimalArray([decimal.Decimal('1'),
Expand Down
8 changes: 8 additions & 0 deletions pandas/tests/extension/json/test_json.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,14 @@ def test_sort_values_missing(self, data_missing_for_sorting, ascending):
super(TestMethods, self).test_sort_values_missing(
data_missing_for_sorting, ascending)

@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_le(self, data_repeated):
pass

@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_add(self, data_repeated):
pass


class TestCasting(BaseJSON, base.BaseCastingTests):
@pytest.mark.xfail
Expand Down
13 changes: 13 additions & 0 deletions pandas/tests/series/test_combine_concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,19 @@ def test_append_duplicates(self):
with tm.assert_raises_regex(ValueError, msg):
pd.concat([s1, s2], verify_integrity=True)

def test_combine_scalar(self):
# GH 21248
# Note - combine() with another Series is tested elsewhere because
# it is used when testing operators
s = pd.Series([i * 10 for i in range(5)])
result = s.combine(3, lambda x, y: x + y)
expected = pd.Series([i * 10 + 3 for i in range(5)])
tm.assert_series_equal(result, expected)

result = s.combine(22, lambda x, y: min(x, y))
expected = pd.Series([min(i * 10, 22) for i in range(5)])
tm.assert_series_equal(result, expected)

def test_combine_first(self):
values = tm.makeIntIndex(20).values.astype(float)
series = Series(values, index=tm.makeIntIndex(20))
Expand Down