Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use align_method in comp_method_FRAME #22880

Merged
merged 15 commits into from
Oct 13, 2018
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -487,6 +487,88 @@ Previous Behavior:
0
0 NaT

.. _whatsnew_0240.api.dataframe_cmp_broadcasting:

DataFrame Comparison Operations Broadcasting Changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, the broadcasting behavior of :class:`DataFrame` comparison
operations (``==``, ``!=``, ...) was inconsistent with the behavior of
arithmetic operations (``+``, ``-``, ...). The behavior of the comparison
operations has been changed to match the arithmetic operations in these cases.
(:issue:`22880`)

The affected cases are:

- operating against a 2-dimensional ``np.ndarray`` with either 1 row or 1 column will now broadcast the same way a ``np.ndarray`` would (:issue:`23000`).
- a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise ``ValueError`` instead of operating column-by-column (:issue:`22880`.
- a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising ``ValueError`` (:issue:`22880`).

Previous Behavior:

.. code-block:: ipython

In [3]: arr = np.arange(6).reshape(3, 2)
In [4]: df = pd.DataFrame(arr)

In [5]: df == arr[[0], :]
...: # comparison previously broadcast where arithmetic would raise
Out[5]:
0 1
0 True True
1 False False
2 False False
In [6]: df + arr[[0], :]
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)

In [7]: df == (1, 2)
...: # length matches number of columns;
...: # comparison previously raised where arithmetic would broadcast
...
ValueError: Invalid broadcasting comparison [(1, 2)] with block values
In [8]: df + (1, 2)
Out[8]:
0 1
0 1 3
1 3 5
2 5 7

In [9]: df == (1, 2, 3)
...: # length matches number of rows
...: # comparison previously broadcast where arithmetic would raise
Out[9]:
0 1
0 False True
1 True False
2 False False
In [10]: df + (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3

*Current Behavior*:

.. ipython:: python
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Will nee d an :okexcept here.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can also remove the In [] prefixes. And hopefully the block continues running when there's an exception in an okexcept.

:okexcept:

arr = np.arange(6).reshape(3, 2)
df = pd.DataFrame(arr)

.. ipython:: python
# comparison and arithmetic both broadcast
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd prefer you make the comments actual sentences here, which is pretty easy when you already have the blocks.

df == arr[[0], :]
df + arr[[0], :]

.. ipython:: python
# comparison and arithmetic broadcast the same way
df == (1, 2)
df + (1, 2)

.. ipython:: python
:okexcept:
# comparison and arithmetic both raise
df == (1, 2, 3)
df + (1, 2, 3)


.. _whatsnew_0240.api.dataframe_arithmetic_broadcasting:

Expand Down
9 changes: 2 additions & 7 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -4945,13 +4945,8 @@ def _combine_match_columns(self, other, func, level=None, try_cast=True):
return ops.dispatch_to_series(left, right, func, axis="columns")

def _combine_const(self, other, func, errors='raise', try_cast=True):
if lib.is_scalar(other) or np.ndim(other) == 0:
return ops.dispatch_to_series(self, other, func)

new_data = self._data.eval(func=func, other=other,
errors=errors,
try_cast=try_cast)
return self._constructor(new_data)
assert lib.is_scalar(other) or np.ndim(other) == 0
return ops.dispatch_to_series(self, other, func)

def combine(self, other, func, fill_value=None, overwrite=True):
"""
Expand Down
139 changes: 0 additions & 139 deletions pandas/core/internals/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -1313,145 +1313,6 @@ def shift(self, periods, axis=0, mgr=None):

return [self.make_block(new_values)]

def eval(self, func, other, errors='raise', try_cast=False, mgr=None):
"""
evaluate the block; return result block from the result

Parameters
----------
func : how to combine self, other
other : a ndarray/object
errors : str, {'raise', 'ignore'}, default 'raise'
- ``raise`` : allow exceptions to be raised
- ``ignore`` : suppress exceptions. On error return original object

try_cast : try casting the results to the input type

Returns
-------
a new block, the result of the func
"""
orig_other = other
values = self.values

other = getattr(other, 'values', other)

# make sure that we can broadcast
is_transposed = False
if hasattr(other, 'ndim') and hasattr(values, 'ndim'):
if values.ndim != other.ndim:
is_transposed = True
else:
if values.shape == other.shape[::-1]:
is_transposed = True
elif values.shape[0] == other.shape[-1]:
is_transposed = True
else:
# this is a broadcast error heree
raise ValueError(
"cannot broadcast shape [{t_shape}] with "
"block values [{oth_shape}]".format(
t_shape=values.T.shape, oth_shape=other.shape))

transf = (lambda x: x.T) if is_transposed else (lambda x: x)

# coerce/transpose the args if needed
try:
values, values_mask, other, other_mask = self._try_coerce_args(
transf(values), other)
except TypeError:
block = self.coerce_to_target_dtype(orig_other)
return block.eval(func, orig_other,
errors=errors,
try_cast=try_cast, mgr=mgr)

# get the result, may need to transpose the other
def get_result(other):

# avoid numpy warning of comparisons again None
if other is None:
result = not func.__name__ == 'eq'

# avoid numpy warning of elementwise comparisons to object
elif is_numeric_v_string_like(values, other):
result = False

# avoid numpy warning of elementwise comparisons
elif func.__name__ == 'eq':
if is_list_like(other) and not isinstance(other, np.ndarray):
other = np.asarray(other)

# if we can broadcast, then ok
if values.shape[-1] != other.shape[-1]:
return False
result = func(values, other)
else:
result = func(values, other)

# mask if needed
if isinstance(values_mask, np.ndarray) and values_mask.any():
result = result.astype('float64', copy=False)
result[values_mask] = np.nan
if other_mask is True:
result = result.astype('float64', copy=False)
result[:] = np.nan
elif isinstance(other_mask, np.ndarray) and other_mask.any():
result = result.astype('float64', copy=False)
result[other_mask.ravel()] = np.nan

return result

# error handler if we have an issue operating with the function
def handle_error():

if errors == 'raise':
# The 'detail' variable is defined in outer scope.
raise TypeError(
'Could not operate {other!r} with block values '
'{detail!s}'.format(other=other, detail=detail)) # noqa
else:
# return the values
result = np.empty(values.shape, dtype='O')
result.fill(np.nan)
return result

# get the result
try:
with np.errstate(all='ignore'):
result = get_result(other)

# if we have an invalid shape/broadcast error
# GH4576, so raise instead of allowing to pass through
except ValueError as detail:
raise
except Exception as detail:
result = handle_error()

# technically a broadcast error in numpy can 'work' by returning a
# boolean False
if not isinstance(result, np.ndarray):
if not isinstance(result, np.ndarray):

# differentiate between an invalid ndarray-ndarray comparison
# and an invalid type comparison
if isinstance(values, np.ndarray) and is_list_like(other):
raise ValueError(
'Invalid broadcasting comparison [{other!r}] with '
'block values'.format(other=other))

raise TypeError('Could not compare [{other!r}] '
'with block values'.format(other=other))

# transpose if needed
result = transf(result)

# try to cast if requested
if try_cast:
result = self._try_cast_result(result)

result = _block_shape(result, ndim=self.ndim)
return [self.make_block(result)]

def where(self, other, cond, align=True, errors='raise',
try_cast=False, axis=0, transpose=False, mgr=None):
"""
Expand Down
6 changes: 0 additions & 6 deletions pandas/core/internals/managers.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,9 +373,6 @@ def apply(self, f, axes=None, filter=None, do_integrity_check=False,
align_keys = ['new', 'mask']
else:
align_keys = ['mask']
elif f == 'eval':
align_copy = False
align_keys = ['other']
elif f == 'fillna':
# fillna internally does putmask, maybe it's better to do this
# at mgr, not block level?
Expand Down Expand Up @@ -511,9 +508,6 @@ def isna(self, func, **kwargs):
def where(self, **kwargs):
return self.apply('where', **kwargs)

def eval(self, **kwargs):
return self.apply('eval', **kwargs)

def quantile(self, **kwargs):
return self.reduction('quantile', **kwargs)

Expand Down
3 changes: 3 additions & 0 deletions pandas/core/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -1934,6 +1934,9 @@ def _comp_method_FRAME(cls, func, special):

@Appender('Wrapper for comparison method {name}'.format(name=op_name))
def f(self, other):

other = _align_method_FRAME(self, other, axis=None)

if isinstance(other, ABCDataFrame):
# Another DataFrame
if not self._indexed_same(other):
Expand Down
16 changes: 10 additions & 6 deletions pandas/tests/frame/test_arithmetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,15 +48,19 @@ def test_mixed_comparison(self):
assert result.all().all()

def test_df_boolean_comparison_error(self):
# GH 4576
# GH#4576, GH#22880
# boolean comparisons with a tuple/list give unexpected results
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you change this comment

df = pd.DataFrame(np.arange(6).reshape((3, 2)))

# not shape compatible
with pytest.raises(ValueError):
df == (2, 2)
with pytest.raises(ValueError):
df == [2, 2]
expected = pd.DataFrame([[False, False],
[True, False],
[False, False]])

result = df == (2, 2)
tm.assert_frame_equal(result, expected)

result = df == [2, 2]
tm.assert_frame_equal(result, expected)

def test_df_float_none_comparison(self):
df = pd.DataFrame(np.random.randn(8, 3), index=range(8),
Expand Down
31 changes: 18 additions & 13 deletions pandas/tests/frame/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -752,8 +752,9 @@ def test_comp(func):
result = func(df1, df2)
tm.assert_numpy_array_equal(result.values,
func(df1.values, df2.values))

with tm.assert_raises_regex(ValueError,
'Wrong number of dimensions'):
'dim must be <= 2'):
func(df1, ndim_5)

result2 = func(self.simple, row)
Expand Down Expand Up @@ -804,12 +805,15 @@ def test_boolean_comparison(self):
result = df.values > b
assert_numpy_array_equal(result, expected.values)

result = df > l
assert_frame_equal(result, expected)
with pytest.raises(ValueError):
# wrong shape
df > l

result = df > tup
assert_frame_equal(result, expected)
with pytest.raises(ValueError):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you assert the error messages in these

# wrong shape
result = df > tup

# broadcasts like ndarray (GH#23000)
result = df > b_r
assert_frame_equal(result, expected)

Expand All @@ -827,12 +831,13 @@ def test_boolean_comparison(self):
result = df == b
assert_frame_equal(result, expected)

result = df == l
assert_frame_equal(result, expected)
with pytest.raises(ValueError):
result = df == l

result = df == tup
assert_frame_equal(result, expected)
with pytest.raises(ValueError):
result = df == tup

# broadcasts like ndarray (GH#23000)
result = df == b_r
assert_frame_equal(result, expected)

Expand All @@ -850,11 +855,11 @@ def test_boolean_comparison(self):
expected.index = df.index
expected.columns = df.columns

result = df == l
assert_frame_equal(result, expected)
with pytest.raises(ValueError):
result = df == l

result = df == tup
assert_frame_equal(result, expected)
with pytest.raises(ValueError):
result = df == tup

def test_combine_generic(self):
df1 = self.frame
Expand Down